PINN#
- class PINN(problem, model, extra_features=None, loss=MSELoss(), optimizer=<class 'torch.optim.adam.Adam'>, optimizer_kwargs={'lr': 0.001}, scheduler=<class 'torch.optim.lr_scheduler.ConstantLR'>, scheduler_kwargs={'factor': 1, 'total_iters': 0})[source]#
Bases:
PINNInterface
Physics Informed Neural Network (PINN) solver class. This class implements Physics Informed Neural Network solvers, using a user specified
model
to solve a specificproblem
. It can be used for solving both forward and inverse problems.The Physics Informed Network aims to find the solution \(\mathbf{u}:\Omega\rightarrow\mathbb{R}^m\) of the differential problem:
\[\begin{split}\begin{cases} \mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\ \mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad, \mathbf{x}\in\partial\Omega \end{cases}\end{split}\]minimizing the loss function
\[\mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^N \mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) + \frac{1}{N}\sum_{i=1}^N \mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i))\]where \(\mathcal{L}\) is a specific loss function, default Mean Square Error:
\[\mathcal{L}(v) = \| v \|^2_2.\]See also
Original reference: Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning. Nature Reviews Physics, 3, 422-440. DOI: 10.1038.
- Parameters:
problem (AbstractProblem) – The formulation of the problem.
model (torch.nn.Module) – The neural network model to use.
loss (torch.nn.Module) – The loss function used as minimizer, default
torch.nn.MSELoss
.extra_features (torch.nn.Module) – The additional input features to use as augmented input.
optimizer (torch.optim.Optimizer) – The neural network optimizer to use; default is
torch.optim.Adam
.optimizer_kwargs (dict) – Optimizer constructor keyword args.
scheduler (torch.optim.LRScheduler) – Learning rate scheduler.
scheduler_kwargs (dict) – LR scheduler constructor keyword args.
- forward(x)[source]#
Forward pass implementation for the PINN solver. It returns the function evaluation \(\mathbf{u}(\mathbf{x})\) at the control points \(\mathbf{x}\).
- Parameters:
x (LabelTensor) – Input tensor for the PINN solver. It expects a tensor \(N \times D\), where \(N\) the number of points in the mesh, \(D\) the dimension of the problem,
- Returns:
PINN solution evaluated at contro points.
- Return type:
- loss_phys(samples, equation)[source]#
Computes the physics loss for the PINN solver based on given samples and equation.
- Parameters:
samples (LabelTensor) – The samples to evaluate the physics loss.
equation (EquationInterface) – The governing equation representing the physics.
- Returns:
The physics loss calculated based on given samples and equation.
- Return type:
- property scheduler#
Scheduler for the PINN training.
- property neural_net#
Neural network for the PINN training.