Exclusion#
Module for Exclusion class.
- class Exclusion(geometries)[source]#
Bases:
OperationInterface
PINA implementation of Exclusion of Domains. Given two sets \(A\) and \(B\) then the domain difference is defined as:
\[A \setminus B = \{x \mid x \in A \land x \in B \land x \not\in (A \lor B)\},\]with \(x\) a point in \(\mathbb{R}^N\) and \(N\) the dimension of the geometry space.
- Parameters:
geometries (list) – A list of geometries from
pina.geometry
such asEllipsoidDomain
orCartesianDomain
.- Example:
>>> # Create two ellipsoid domains >>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]}) >>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]}) >>> # Create a Exclusion of the ellipsoid domains >>> exclusion = Exclusion([ellipsoid1, ellipsoid2])
- is_inside(point, check_border=False)[source]#
Check if a point is inside the
Exclusion
domain.- Parameters:
point (torch.Tensor) – Point to be checked.
check_border (bool) – If
True
, the border is considered inside.
- Returns:
True
if the point is inside the Exclusion domain,False
otherwise.- Return type:
- sample(n, mode='random', variables='all')[source]#
Sample routine for
Exclusion
domain.- Parameters:
- Returns:
Returns
LabelTensor
of n sampled points.- Return type:
- Example:
>>> # Create two Cartesian domains >>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]}) >>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]}) >>> # Create a Exclusion of the ellipsoid domains >>> Exclusion = Exclusion([cartesian1, cartesian2]) >>> # Sample >>> Exclusion.sample(n=5) LabelTensor([[2.4187, 1.5792], [2.7456, 2.3868], [2.3830, 1.7037], [0.8636, 1.8453], [0.1978, 0.3526]]) >>> len(Exclusion.sample(n=5) 5