Union#
Module for Union class.
- class Union(geometries)[source]#
Bases:
OperationInterface
PINA implementation of Unions of Domains. Given two sets \(A\) and \(B\) then the domain difference is defined as:
\[A \cup B = \{x \mid x \in A \lor x \in B\},\]with \(x\) a point in \(\mathbb{R}^N\) and \(N\) the dimension of the geometry space.
- Parameters:
geometries (list) – A list of geometries from
pina.geometry
such asEllipsoidDomain
orCartesianDomain
.- Example:
>>> # Create two ellipsoid domains >>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]}) >>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]}) >>> # Create a union of the ellipsoid domains >>> union = GeometryUnion([ellipsoid1, ellipsoid2])
- is_inside(point, check_border=False)[source]#
Check if a point is inside the
Union
domain.- Parameters:
point (LabelTensor) – Point to be checked.
check_border (bool) – Check if the point is also on the frontier of the ellipsoid, default
False
.
- Returns:
Returning
True
if the point is inside,False
otherwise.- Return type:
- sample(n, mode='random', variables='all')[source]#
Sample routine for
Union
domain.- Parameters:
- Returns:
Returns
LabelTensor
of n sampled points.- Return type:
- Example:
>>> # Create two ellipsoid domains >>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]}) >>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]}) >>> # Create a union of the ellipsoid domains >>> union = Union([cartesian1, cartesian2]) >>> # Sample >>> union.sample(n=5) LabelTensor([[1.2128, 2.1991], [1.3530, 2.4317], [2.2562, 1.6605], [0.8451, 1.9878], [1.8623, 0.7102]]) >>> len(union.sample(n=5) 5