GraphNeuralKernel#
- class GraphNeuralKernel(width, edge_features, n_layers=2, internal_n_layers=0, internal_layers=None, inner_size=None, internal_func=None, external_func=None, shared_weights=False)[source]#
Bases:
Module
Graph Neural Operator kernel model class.
This class implements the Graph Neural Operator kernel network.
See also
Original reference: Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A. (2020). Neural Operator: Graph Kernel Network for Partial Differential Equations. DOI: arXiv preprint arXiv:2003.03485
Initialization of the
GraphNeuralKernel
class.- Parameters:
width (int) – The width of the kernel.
edge_features (int) – The number of edge features.
n_layers (int) – The number of kernel layers. Default is
2
.internal_n_layers (int) – The number of layers of the neural network inside each kernel layer. Default is
0
.internal_layers (list[int] | tuple[int]) – The number of neurons for each layer of the neural network inside each kernel layer. Default is
None
.internal_func (torch.nn.Module) – The activation function used inside each kernel layer. If
None
, it uses thetorch.nn.Tanh
activation. Default isNone
.external_func (torch.nn.Module) – The activation function applied to the output of the each kernel layer. If
None
, it uses thetorch.nn.Tanh
activation. Default isNone
.shared_weights (bool) – If
True
, the weights of each kernel layer are shared. Default isFalse
.
- forward(x, edge_index, edge_attr)[source]#
The forward pass of the Graph Neural Kernel.
- Parameters:
x (torch.Tensor | LabelTensor) – The input tensor.
edge_index (torch.Tensor) – The edge index.
edge_attr (torch.Tensor | LabelTensor) – The edge attributes.
- Returns:
The output tensor.
- Return type: