Residual Block#
- class ResidualBlock(input_dim, output_dim, hidden_dim, spectral_norm=False, activation=ReLU())[source]#
Bases:
Module
Residual block class.
See also
Original reference: He, Kaiming, et al. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. DOI: https://arxiv.org/pdf/1512.03385.pdf.
Initialization of the
ResidualBlock
class.- Parameters:
input_dim (int) – The input dimension.
output_dim (int) – The output dimension.
hidden_dim (int) – The hidden dimension.
spectral_norm (bool) – If
True
, the spectral normalization is applied to the feedforward layers. Default isFalse
.activation (torch.nn.Module) – The activation function. Default is
torch.nn.ReLU
.
- forward(x)[source]#
Forward pass.
- Parameters:
x (torch.Tensor) – The input tensor.
- Returns:
The output tensor.
- Return type: