Intersection#
Module for the Intersection Operation.
- class Intersection(geometries)[source]#
Bases:
OperationInterface
Implementation of the intersection operation between of a list of domains.
Given two sets \(A\) and \(B\), define the intersection of the two sets as:
\[A \cap B = \{x \mid x \in A \land x \in B\},\]where \(x\) is a point in \(\mathbb{R}^N\).
Initialization of the
Intersection
class.- Parameters:
geometries (list[DomainInterface]) – A list of instances of the
DomainInterface
class on which the intersection operation is performed.- Example:
>>> # Create two ellipsoid domains >>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]}) >>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]}) >>> # Define the intersection of the domains >>> intersection = Intersection([ellipsoid1, ellipsoid2])
- is_inside(point, check_border=False)[source]#
Check if a point is inside the resulting domain.
- Parameters:
point (LabelTensor) – Point to be checked.
check_border (bool) – If
True
, the border is considered inside the domain. Default isFalse
.
- Returns:
True
if the point is inside the domain,False
otherwise.- Return type:
- sample(n, mode='random', variables='all')[source]#
Sampling routine.
- Parameters:
- Raises:
NotImplementedError – If the sampling method is not implemented.
- Returns:
Sampled points.
- Return type:
- Example:
>>> # Create two Cartesian domains >>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]}) >>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]}) >>> # Define the intersection of the domains >>> intersection = Intersection([cartesian1, cartesian2]) >>> # Sample >>> intersection.sample(n=5) LabelTensor([[1.7697, 1.8654], [1.2841, 1.1208], [1.7289, 1.9843], [1.3332, 1.2448], [1.9902, 1.4458]]) >>> len(intersection.sample(n=5) 5