import torch
from copy import deepcopy
try:
from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0
except ImportError:
from torch.optim.lr_scheduler import (
_LRScheduler as LRScheduler,
) # torch < 2.0
from .basepinn import PINNInterface
from pina.utils import check_consistency
from pina.problem import InverseProblem
from torch.optim.lr_scheduler import ConstantLR
class Weights(torch.nn.Module):
"""
This class aims to implements the mask model for
self adaptive weights of the Self-Adaptive
PINN solver.
"""
def __init__(self, func):
"""
:param torch.nn.Module func: the mask module of SAPINN
"""
super().__init__()
check_consistency(func, torch.nn.Module)
self.sa_weights = torch.nn.Parameter(torch.Tensor())
self.func = func
def forward(self):
"""
Forward pass implementation for the mask module.
It returns the function on the weights
evaluation.
:return: evaluation of self adaptive weights through the mask.
:rtype: torch.Tensor
"""
return self.func(self.sa_weights)
[docs]
class SAPINN(PINNInterface):
r"""
Self Adaptive Physics Informed Neural Network (SAPINN) solver class.
This class implements Self-Adaptive Physics Informed Neural
Network solvers, using a user specified ``model`` to solve a specific
``problem``. It can be used for solving both forward and inverse problems.
The Self Adapive Physics Informed Neural Network aims to find
the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m`
of the differential problem:
.. math::
\begin{cases}
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
\mathbf{x}\in\partial\Omega
\end{cases}
integrating the pointwise loss evaluation through a mask :math:`m` and
self adaptive weights that permit to focus the loss function on
specific training samples.
The loss function to solve the problem is
.. math::
\mathcal{L}_{\rm{problem}} = \frac{1}{N} \sum_{i=1}^{N_\Omega} m
\left( \lambda_{\Omega}^{i} \right) \mathcal{L} \left( \mathcal{A}
[\mathbf{u}](\mathbf{x}) \right) + \frac{1}{N}
\sum_{i=1}^{N_{\partial\Omega}}
m \left( \lambda_{\partial\Omega}^{i} \right) \mathcal{L}
\left( \mathcal{B}[\mathbf{u}](\mathbf{x})
\right),
denoting the self adaptive weights as
:math:`\lambda_{\Omega}^1, \dots, \lambda_{\Omega}^{N_\Omega}` and
:math:`\lambda_{\partial \Omega}^1, \dots,
\lambda_{\Omega}^{N_\partial \Omega}`
for :math:`\Omega` and :math:`\partial \Omega`, respectively.
Self Adaptive Physics Informed Neural Network identifies the solution
and appropriate self adaptive weights by solving the following problem
.. math::
\min_{w} \max_{\lambda_{\Omega}^k, \lambda_{\partial \Omega}^s}
\mathcal{L} ,
where :math:`w` denotes the network parameters, and
:math:`\mathcal{L}` is a specific loss
function, default Mean Square Error:
.. math::
\mathcal{L}(v) = \| v \|^2_2.
.. seealso::
**Original reference**: McClenny, Levi D., and Ulisses M. Braga-Neto.
"Self-adaptive physics-informed neural networks."
Journal of Computational Physics 474 (2023): 111722.
DOI: `10.1016/
j.jcp.2022.111722 <https://doi.org/10.1016/j.jcp.2022.111722>`_.
"""
def __init__(
self,
problem,
model,
weights_function=torch.nn.Sigmoid(),
extra_features=None,
loss=torch.nn.MSELoss(),
optimizer_model=torch.optim.Adam,
optimizer_model_kwargs={"lr": 0.001},
optimizer_weights=torch.optim.Adam,
optimizer_weights_kwargs={"lr": 0.001},
scheduler_model=ConstantLR,
scheduler_model_kwargs={"factor": 1, "total_iters": 0},
scheduler_weights=ConstantLR,
scheduler_weights_kwargs={"factor": 1, "total_iters": 0},
):
"""
:param AbstractProblem problem: The formualation of the problem.
:param torch.nn.Module model: The neural network model to use
for the model.
:param torch.nn.Module weights_function: The neural network model
related to the mask of SAPINN.
default :obj:`~torch.nn.Sigmoid`.
:param list(torch.nn.Module) extra_features: The additional input
features to use as augmented input. If ``None`` no extra features
are passed. If it is a list of :class:`torch.nn.Module`,
the extra feature list is passed to all models. If it is a list
of extra features' lists, each single list of extra feature
is passed to a model.
:param torch.nn.Module loss: The loss function used as minimizer,
default :class:`torch.nn.MSELoss`.
:param torch.optim.Optimizer optimizer_model: The neural
network optimizer to use for the model network
, default is `torch.optim.Adam`.
:param dict optimizer_model_kwargs: Optimizer constructor keyword
args. for the model.
:param torch.optim.Optimizer optimizer_weights: The neural
network optimizer to use for mask model model,
default is `torch.optim.Adam`.
:param dict optimizer_weights_kwargs: Optimizer constructor
keyword args. for the mask module.
:param torch.optim.LRScheduler scheduler_model: Learning
rate scheduler for the model.
:param dict scheduler_model_kwargs: LR scheduler constructor
keyword args.
:param torch.optim.LRScheduler scheduler_weights: Learning
rate scheduler for the mask model.
:param dict scheduler_model_kwargs: LR scheduler constructor
keyword args.
"""
# check consistency weitghs_function
check_consistency(weights_function, torch.nn.Module)
# create models for weights
weights_dict = {}
for condition_name in problem.conditions:
weights_dict[condition_name] = Weights(weights_function)
weights_dict = torch.nn.ModuleDict(weights_dict)
super().__init__(
models=[model, weights_dict],
problem=problem,
optimizers=[optimizer_model, optimizer_weights],
optimizers_kwargs=[
optimizer_model_kwargs,
optimizer_weights_kwargs,
],
extra_features=extra_features,
loss=loss,
)
# set automatic optimization
self.automatic_optimization = False
# check consistency
check_consistency(scheduler_model, LRScheduler, subclass=True)
check_consistency(scheduler_model_kwargs, dict)
check_consistency(scheduler_weights, LRScheduler, subclass=True)
check_consistency(scheduler_weights_kwargs, dict)
# assign schedulers
self._schedulers = [
scheduler_model(self.optimizers[0], **scheduler_model_kwargs),
scheduler_weights(self.optimizers[1], **scheduler_weights_kwargs),
]
self._model = self.models[0]
self._weights = self.models[1]
self._vectorial_loss = deepcopy(loss)
self._vectorial_loss.reduction = "none"
[docs]
def forward(self, x):
"""
Forward pass implementation for the PINN
solver. It returns the function
evaluation :math:`\mathbf{u}(\mathbf{x})` at the control points
:math:`\mathbf{x}`.
:param LabelTensor x: Input tensor for the SAPINN solver. It expects
a tensor :math:`N \\times D`, where :math:`N` the number of points
in the mesh, :math:`D` the dimension of the problem,
:return: PINN solution.
:rtype: LabelTensor
"""
return self.neural_net(x)
[docs]
def loss_phys(self, samples, equation):
"""
Computes the physics loss for the SAPINN solver based on given
samples and equation.
:param LabelTensor samples: The samples to evaluate the physics loss.
:param EquationInterface equation: The governing equation
representing the physics.
:return: The physics loss calculated based on given
samples and equation.
:rtype: torch.Tensor
"""
# train weights
self.optimizer_weights.zero_grad()
weighted_loss, _ = self._loss_phys(samples, equation)
loss_value = -weighted_loss.as_subclass(torch.Tensor)
self.manual_backward(loss_value)
self.optimizer_weights.step()
# detaching samples from the computational graph to erase it and setting
# the gradient to true to create a new computational graph.
# In alternative set `retain_graph=True`.
samples = samples.detach()
samples.requires_grad = True
# train model
self.optimizer_model.zero_grad()
weighted_loss, loss = self._loss_phys(samples, equation)
loss_value = weighted_loss.as_subclass(torch.Tensor)
self.manual_backward(loss_value)
self.optimizer_model.step()
# store loss without weights
self.store_log(loss_value=float(loss))
return loss_value
[docs]
def loss_data(self, input_tensor, output_tensor):
"""
Computes the data loss for the SAPINN solver based on input and
output. It computes the loss between the
network output against the true solution.
:param LabelTensor input_tensor: The input to the neural networks.
:param LabelTensor output_tensor: The true solution to compare the
network solution.
:return: The computed data loss.
:rtype: torch.Tensor
"""
# train weights
self.optimizer_weights.zero_grad()
weighted_loss, _ = self._loss_data(input_tensor, output_tensor)
loss_value = -weighted_loss.as_subclass(torch.Tensor)
self.manual_backward(loss_value)
self.optimizer_weights.step()
# detaching samples from the computational graph to erase it and setting
# the gradient to true to create a new computational graph.
# In alternative set `retain_graph=True`.
input_tensor = input_tensor.detach()
input_tensor.requires_grad = True
# train model
self.optimizer_model.zero_grad()
weighted_loss, loss = self._loss_data(input_tensor, output_tensor)
loss_value = weighted_loss.as_subclass(torch.Tensor)
self.manual_backward(loss_value)
self.optimizer_model.step()
# store loss without weights
self.store_log(loss_value=float(loss))
return loss_value
[docs]
def on_train_batch_end(self, outputs, batch, batch_idx):
"""
This method is called at the end of each training batch, and ovverides
the PytorchLightining implementation for logging the checkpoints.
:param torch.Tensor outputs: The output from the model for the
current batch.
:param tuple batch: The current batch of data.
:param int batch_idx: The index of the current batch.
:return: Whatever is returned by the parent
method ``on_train_batch_end``.
:rtype: Any
"""
# increase by one the counter of optimization to save loggers
self.trainer.fit_loop.epoch_loop.manual_optimization.optim_step_progress.total.completed += (
1
)
return super().on_train_batch_end(outputs, batch, batch_idx)
[docs]
def on_train_start(self):
"""
This method is called at the start of the training for setting
the self adaptive weights as parameters of the mask model.
:return: Whatever is returned by the parent
method ``on_train_start``.
:rtype: Any
"""
device = torch.device(
self.trainer._accelerator_connector._accelerator_flag
)
for condition_name, tensor in self.problem.input_pts.items():
self.weights_dict.torchmodel[condition_name].sa_weights.data = (
torch.rand((tensor.shape[0], 1), device=device)
)
return super().on_train_start()
[docs]
def on_load_checkpoint(self, checkpoint):
"""
Overriding the Pytorch Lightning ``on_load_checkpoint`` to handle
checkpoints for Self Adaptive Weights. This method should not be
overridden if not intentionally.
:param dict checkpoint: Pytorch Lightning checkpoint dict.
"""
for condition_name, tensor in self.problem.input_pts.items():
self.weights_dict.torchmodel[condition_name].sa_weights.data = (
torch.rand((tensor.shape[0], 1))
)
return super().on_load_checkpoint(checkpoint)
def _loss_phys(self, samples, equation):
"""
Elaboration of the physical loss for the SAPINN solver.
:param LabelTensor samples: Input samples to evaluate the physics loss.
:param EquationInterface equation: the governing equation representing
the physics.
:return: tuple with weighted and not weighted scalar loss
:rtype: List[LabelTensor, LabelTensor]
"""
residual = self.compute_residual(samples, equation)
return self._compute_loss(residual)
def _loss_data(self, input_tensor, output_tensor):
"""
Elaboration of the loss related to data for the SAPINN solver.
:param LabelTensor input_tensor: The input to the neural networks.
:param LabelTensor output_tensor: The true solution to compare the
network solution.
:return: tuple with weighted and not weighted scalar loss
:rtype: List[LabelTensor, LabelTensor]
"""
residual = self.forward(input_tensor) - output_tensor
return self._compute_loss(residual)
def _compute_loss(self, residual):
"""
Elaboration of the pointwise loss through the mask model and the
self adaptive weights
:param LabelTensor residual: the matrix of residuals that have to
be weighted
:return: tuple with weighted and not weighted loss
:rtype List[LabelTensor, LabelTensor]
"""
weights = self.weights_dict.torchmodel[
self.current_condition_name
].forward()
loss_value = self._vectorial_loss(
torch.zeros_like(residual, requires_grad=True), residual
)
return (
self._vect_to_scalar(weights * loss_value),
self._vect_to_scalar(loss_value),
)
def _vect_to_scalar(self, loss_value):
"""
Elaboration of the pointwise loss through the mask model and the
self adaptive weights
:param LabelTensor loss_value: the matrix of pointwise loss
:return: the scalar loss
:rtype LabelTensor
"""
if self.loss.reduction == "mean":
ret = torch.mean(loss_value)
elif self.loss.reduction == "sum":
ret = torch.sum(loss_value)
else:
raise RuntimeError(
f"Invalid reduction, got {self.loss.reduction} "
"but expected mean or sum."
)
return ret
@property
def neural_net(self):
"""
Returns the neural network model.
:return: The neural network model.
:rtype: torch.nn.Module
"""
return self.models[0]
@property
def weights_dict(self):
"""
Return the mask models associate to the application of
the mask to the self adaptive weights for each loss that
compones the global loss of the problem.
:return: The ModuleDict for mask models.
:rtype: torch.nn.ModuleDict
"""
return self.models[1]
@property
def scheduler_model(self):
"""
Returns the scheduler associated with the neural network model.
:return: The scheduler for the neural network model.
:rtype: torch.optim.lr_scheduler._LRScheduler
"""
return self._scheduler[0]
@property
def scheduler_weights(self):
"""
Returns the scheduler associated with the mask model (if applicable).
:return: The scheduler for the mask model.
:rtype: torch.optim.lr_scheduler._LRScheduler
"""
return self._scheduler[1]
@property
def optimizer_model(self):
"""
Returns the optimizer associated with the neural network model.
:return: The optimizer for the neural network model.
:rtype: torch.optim.Optimizer
"""
return self.optimizers[0]
@property
def optimizer_weights(self):
"""
Returns the optimizer associated with the mask model (if applicable).
:return: The optimizer for the mask model.
:rtype: torch.optim.Optimizer
"""
return self.optimizers[1]