Source code for pina.model.lno

"""Module LowRank Neural Operator."""

import torch
from torch import nn, concatenate

from pina.utils import check_consistency

from .base_no import KernelNeuralOperator
from .layers.lowrank_layer import LowRankBlock


[docs] class LowRankNeuralOperator(KernelNeuralOperator): """ Implementation of LowRank Neural Operator. LowRank Neural Operator is a general architecture for learning Operators. Unlike traditional machine learning methods LowRankNeuralOperator is designed to map entire functions to other functions. It can be trained with Supervised or PINN based learning strategies. LowRankNeuralOperator does convolution by performing a low rank approximation, see :class:`~pina.model.layers.lowrank_layer.LowRankBlock`. .. seealso:: **Original reference**: Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2023). *Neural operator: Learning maps between function spaces with applications to PDEs*. Journal of Machine Learning Research, 24(89), 1-97. """ def __init__( self, lifting_net, projecting_net, field_indices, coordinates_indices, n_kernel_layers, rank, inner_size=20, n_layers=2, func=torch.nn.Tanh, bias=True, ): """ :param torch.nn.Module lifting_net: The neural network for lifting the input. It must take as input the input field and the coordinates at which the input field is avaluated. The output of the lifting net is chosen as embedding dimension of the problem :param torch.nn.Module projecting_net: The neural network for projecting the output. It must take as input the embedding dimension (output of the ``lifting_net``) plus the dimension of the coordinates. :param list[str] field_indices: the label of the fields in the input tensor. :param list[str] coordinates_indices: the label of the coordinates in the input tensor. :param int n_kernel_layers: number of hidden kernel layers. Default is 4. :param int inner_size: Number of neurons in the hidden layer(s) for the basis function network. Default is 20. :param int n_layers: Number of hidden layers. for the basis function network. Default is 2. :param func: The activation function to use for the basis function network. If a single :class:`torch.nn.Module` is passed, this is used as activation function after any layers, except the last one. If a list of Modules is passed, they are used as activation functions at any layers, in order. :param bool bias: If ``True`` the MLP will consider some bias for the basis function network. """ # check consistency check_consistency(field_indices, str) check_consistency(coordinates_indices, str) check_consistency(n_kernel_layers, int) # check hidden dimensions match input_lifting_net = next(lifting_net.parameters()).size()[-1] output_lifting_net = lifting_net( torch.rand(size=next(lifting_net.parameters()).size()) ).shape[-1] projecting_net_input = next(projecting_net.parameters()).size()[-1] if len(field_indices) + len(coordinates_indices) != input_lifting_net: raise ValueError( "The lifting_net must take as input the " "coordinates vector and the field vector." ) if ( output_lifting_net + len(coordinates_indices) != projecting_net_input ): raise ValueError( "The projecting_net input must be equal to " "the embedding dimension (which is the output) " "of the lifting_net plus the dimension of the " "coordinates, i.e. len(coordinates_indices)." ) # assign self.coordinates_indices = coordinates_indices self.field_indices = field_indices integral_net = nn.Sequential( *[ LowRankBlock( input_dimensions=len(coordinates_indices), embedding_dimenion=output_lifting_net, rank=rank, inner_size=inner_size, n_layers=n_layers, func=func, bias=bias, ) for _ in range(n_kernel_layers) ] ) super().__init__(lifting_net, integral_net, projecting_net)
[docs] def forward(self, x): r""" Forward computation for LowRank Neural Operator. It performs a lifting of the input by the ``lifting_net``. Then different layers of LowRank Neural Operator Blocks are applied. Finally the output is projected to the final dimensionality by the ``projecting_net``. :param torch.Tensor x: The input tensor for fourier block, depending on ``dimension`` in the initialization. It expects a tensor :math:`B \times N \times D`, where :math:`B` is the batch_size, :math:`N` the number of points in the mesh, :math:`D` the dimension of the problem, i.e. the sum of ``len(coordinates_indices)+len(field_indices)``. :return: The output tensor obtained from Average Neural Operator. :rtype: torch.Tensor """ # extract points coords = x.extract(self.coordinates_indices) # lifting x = self._lifting_operator(x) # kernel for module in self._integral_kernels: x = module(x, coords) # projecting return self._projection_operator(concatenate((x, coords), dim=-1))