""" Module for adaptive functions. """
import torch
from ..utils import check_consistency
from .adaptive_func_interface import AdaptiveActivationFunctionInterface
[docs]
class AdaptiveReLU(AdaptiveActivationFunctionInterface):
r"""
Adaptive trainable :class:`~torch.nn.ReLU` activation function.
Given the function :math:`\text{ReLU}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
the adaptive function
:math:`\text{ReLU}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
is defined as:
.. math::
\text{ReLU}_{\text{adaptive}}({x}) = \alpha\,\text{ReLU}(\beta{x}+\gamma),
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
ReLU function is defined as:
.. math::
\text{ReLU}(x) = \max(0, x)
.. seealso::
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
*A continuum among logarithmic, linear, and exponential functions,
and its potential to improve generalization in neural networks.*
2015 7th international joint conference on knowledge discovery,
knowledge engineering and knowledge management (IC3K).
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
<https://arxiv.org/abs/1602.01321>`_.
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
activation functions accelerate convergence in deep and
physics-informed neural networks*. Journal of
Computational Physics 404 (2020): 109136.
DOI: `JCP 10.1016
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
"""
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
super().__init__(alpha, beta, gamma, fixed)
self._func = torch.nn.ReLU()
[docs]
class AdaptiveSigmoid(AdaptiveActivationFunctionInterface):
r"""
Adaptive trainable :class:`~torch.nn.Sigmoid` activation function.
Given the function :math:`\text{Sigmoid}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
the adaptive function
:math:`\text{Sigmoid}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
is defined as:
.. math::
\text{Sigmoid}_{\text{adaptive}}({x}) = \alpha\,\text{Sigmoid}(\beta{x}+\gamma),
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
Sigmoid function is defined as:
.. math::
\text{Sigmoid}(x) = \frac{1}{1 + \exp(-x)}
.. seealso::
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
*A continuum among logarithmic, linear, and exponential functions,
and its potential to improve generalization in neural networks.*
2015 7th international joint conference on knowledge discovery,
knowledge engineering and knowledge management (IC3K).
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
<https://arxiv.org/abs/1602.01321>`_.
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
activation functions accelerate convergence in deep and
physics-informed neural networks*. Journal of
Computational Physics 404 (2020): 109136.
DOI: `JCP 10.1016
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
"""
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
super().__init__(alpha, beta, gamma, fixed)
self._func = torch.nn.Sigmoid()
[docs]
class AdaptiveTanh(AdaptiveActivationFunctionInterface):
r"""
Adaptive trainable :class:`~torch.nn.Tanh` activation function.
Given the function :math:`\text{Tanh}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
the adaptive function
:math:`\text{Tanh}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
is defined as:
.. math::
\text{Tanh}_{\text{adaptive}}({x}) = \alpha\,\text{Tanh}(\beta{x}+\gamma),
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
Tanh function is defined as:
.. math::
\text{Tanh}(x) = \frac{\exp(x) - \exp(-x)} {\exp(x) + \exp(-x)}
.. seealso::
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
*A continuum among logarithmic, linear, and exponential functions,
and its potential to improve generalization in neural networks.*
2015 7th international joint conference on knowledge discovery,
knowledge engineering and knowledge management (IC3K).
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
<https://arxiv.org/abs/1602.01321>`_.
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
activation functions accelerate convergence in deep and
physics-informed neural networks*. Journal of
Computational Physics 404 (2020): 109136.
DOI: `JCP 10.1016
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
"""
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
super().__init__(alpha, beta, gamma, fixed)
self._func = torch.nn.Tanh()
[docs]
class AdaptiveSiLU(AdaptiveActivationFunctionInterface):
r"""
Adaptive trainable :class:`~torch.nn.SiLU` activation function.
Given the function :math:`\text{SiLU}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
the adaptive function
:math:`\text{SiLU}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
is defined as:
.. math::
\text{SiLU}_{\text{adaptive}}({x}) = \alpha\,\text{SiLU}(\beta{x}+\gamma),
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
SiLU function is defined as:
.. math::
\text{SiLU}(x) = x * \sigma(x), \text{where }\sigma(x)
\text{ is the logistic sigmoid.}
.. seealso::
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
*A continuum among logarithmic, linear, and exponential functions,
and its potential to improve generalization in neural networks.*
2015 7th international joint conference on knowledge discovery,
knowledge engineering and knowledge management (IC3K).
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
<https://arxiv.org/abs/1602.01321>`_.
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
activation functions accelerate convergence in deep and
physics-informed neural networks*. Journal of
Computational Physics 404 (2020): 109136.
DOI: `JCP 10.1016
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
"""
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
super().__init__(alpha, beta, gamma, fixed)
self._func = torch.nn.SiLU()
[docs]
class AdaptiveMish(AdaptiveActivationFunctionInterface):
r"""
Adaptive trainable :class:`~torch.nn.Mish` activation function.
Given the function :math:`\text{Mish}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
the adaptive function
:math:`\text{Mish}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
is defined as:
.. math::
\text{Mish}_{\text{adaptive}}({x}) = \alpha\,\text{Mish}(\beta{x}+\gamma),
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
Mish function is defined as:
.. math::
\text{Mish}(x) = x * \text{Tanh}(x)
.. seealso::
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
*A continuum among logarithmic, linear, and exponential functions,
and its potential to improve generalization in neural networks.*
2015 7th international joint conference on knowledge discovery,
knowledge engineering and knowledge management (IC3K).
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
<https://arxiv.org/abs/1602.01321>`_.
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
activation functions accelerate convergence in deep and
physics-informed neural networks*. Journal of
Computational Physics 404 (2020): 109136.
DOI: `JCP 10.1016
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
"""
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
super().__init__(alpha, beta, gamma, fixed)
self._func = torch.nn.Mish()
[docs]
class AdaptiveELU(AdaptiveActivationFunctionInterface):
r"""
Adaptive trainable :class:`~torch.nn.ELU` activation function.
Given the function :math:`\text{ELU}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
the adaptive function
:math:`\text{ELU}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
is defined as:
.. math::
\text{ELU}_{\text{adaptive}}({x}) = \alpha\,\text{ELU}(\beta{x}+\gamma),
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
ELU function is defined as:
.. math::
\text{ELU}(x) = \begin{cases}
x, & \text{ if }x > 0\\
\exp(x) - 1, & \text{ if }x \leq 0
\end{cases}
.. seealso::
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
*A continuum among logarithmic, linear, and exponential functions,
and its potential to improve generalization in neural networks.*
2015 7th international joint conference on knowledge discovery,
knowledge engineering and knowledge management (IC3K).
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
<https://arxiv.org/abs/1602.01321>`_.
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
activation functions accelerate convergence in deep and
physics-informed neural networks*. Journal of
Computational Physics 404 (2020): 109136.
DOI: `JCP 10.1016
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
"""
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
super().__init__(alpha, beta, gamma, fixed)
self._func = torch.nn.ELU()
[docs]
class AdaptiveCELU(AdaptiveActivationFunctionInterface):
r"""
Adaptive trainable :class:`~torch.nn.CELU` activation function.
Given the function :math:`\text{CELU}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
the adaptive function
:math:`\text{CELU}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
is defined as:
.. math::
\text{CELU}_{\text{adaptive}}({x}) = \alpha\,\text{CELU}(\beta{x}+\gamma),
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
CELU function is defined as:
.. math::
\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x) - 1))
.. seealso::
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
*A continuum among logarithmic, linear, and exponential functions,
and its potential to improve generalization in neural networks.*
2015 7th international joint conference on knowledge discovery,
knowledge engineering and knowledge management (IC3K).
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
<https://arxiv.org/abs/1602.01321>`_.
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
activation functions accelerate convergence in deep and
physics-informed neural networks*. Journal of
Computational Physics 404 (2020): 109136.
DOI: `JCP 10.1016
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
"""
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
super().__init__(alpha, beta, gamma, fixed)
self._func = torch.nn.CELU()
[docs]
class AdaptiveGELU(AdaptiveActivationFunctionInterface):
r"""
Adaptive trainable :class:`~torch.nn.GELU` activation function.
Given the function :math:`\text{GELU}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
the adaptive function
:math:`\text{GELU}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
is defined as:
.. math::
\text{GELU}_{\text{adaptive}}({x}) = \alpha\,\text{GELU}(\beta{x}+\gamma),
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
GELU function is defined as:
.. math::
\text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt{2 / \pi} * (x + 0.044715 * x^3)))
.. seealso::
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
*A continuum among logarithmic, linear, and exponential functions,
and its potential to improve generalization in neural networks.*
2015 7th international joint conference on knowledge discovery,
knowledge engineering and knowledge management (IC3K).
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
<https://arxiv.org/abs/1602.01321>`_.
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
activation functions accelerate convergence in deep and
physics-informed neural networks*. Journal of
Computational Physics 404 (2020): 109136.
DOI: `JCP 10.1016
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
"""
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
super().__init__(alpha, beta, gamma, fixed)
self._func = torch.nn.GELU()
[docs]
class AdaptiveSoftmin(AdaptiveActivationFunctionInterface):
r"""
Adaptive trainable :class:`~torch.nn.Softmin` activation function.
Given the function :math:`\text{Softmin}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
the adaptive function
:math:`\text{Softmin}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
is defined as:
.. math::
\text{Softmin}_{\text{adaptive}}({x}) = \alpha\,\text{Softmin}(\beta{x}+\gamma),
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
Softmin function is defined as:
.. math::
\text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)}
.. seealso::
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
*A continuum among logarithmic, linear, and exponential functions,
and its potential to improve generalization in neural networks.*
2015 7th international joint conference on knowledge discovery,
knowledge engineering and knowledge management (IC3K).
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
<https://arxiv.org/abs/1602.01321>`_.
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
activation functions accelerate convergence in deep and
physics-informed neural networks*. Journal of
Computational Physics 404 (2020): 109136.
DOI: `JCP 10.1016
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
"""
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
super().__init__(alpha, beta, gamma, fixed)
self._func = torch.nn.Softmin()
[docs]
class AdaptiveSoftmax(AdaptiveActivationFunctionInterface):
r"""
Adaptive trainable :class:`~torch.nn.Softmax` activation function.
Given the function :math:`\text{Softmax}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
the adaptive function
:math:`\text{Softmax}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
is defined as:
.. math::
\text{Softmax}_{\text{adaptive}}({x}) = \alpha\,\text{Softmax}(\beta{x}+\gamma),
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters, and the
Softmax function is defined as:
.. math::
\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}
.. seealso::
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
*A continuum among logarithmic, linear, and exponential functions,
and its potential to improve generalization in neural networks.*
2015 7th international joint conference on knowledge discovery,
knowledge engineering and knowledge management (IC3K).
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
<https://arxiv.org/abs/1602.01321>`_.
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
activation functions accelerate convergence in deep and
physics-informed neural networks*. Journal of
Computational Physics 404 (2020): 109136.
DOI: `JCP 10.1016
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
"""
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
super().__init__(alpha, beta, gamma, fixed)
self._func = torch.nn.Softmax()
[docs]
class AdaptiveSIREN(AdaptiveActivationFunctionInterface):
r"""
Adaptive trainable :obj:`~torch.sin` function.
Given the function :math:`\text{sin}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
the adaptive function
:math:`\text{sin}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
is defined as:
.. math::
\text{sin}_{\text{adaptive}}({x}) = \alpha\,\text{sin}(\beta{x}+\gamma),
where :math:`\alpha,\,\beta,\,\gamma` are trainable parameters.
.. seealso::
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
*A continuum among logarithmic, linear, and exponential functions,
and its potential to improve generalization in neural networks.*
2015 7th international joint conference on knowledge discovery,
knowledge engineering and knowledge management (IC3K).
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
<https://arxiv.org/abs/1602.01321>`_.
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
activation functions accelerate convergence in deep and
physics-informed neural networks*. Journal of
Computational Physics 404 (2020): 109136.
DOI: `JCP 10.1016
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
"""
def __init__(self, alpha=None, beta=None, gamma=None, fixed=None):
super().__init__(alpha, beta, gamma, fixed)
self._func = torch.sin
[docs]
class AdaptiveExp(AdaptiveActivationFunctionInterface):
r"""
Adaptive trainable :obj:`~torch.exp` function.
Given the function :math:`\text{exp}:\mathbb{R}^n\rightarrow\mathbb{R}^n`,
the adaptive function
:math:`\text{exp}_{\text{adaptive}}:\mathbb{R}^n\rightarrow\mathbb{R}^n`
is defined as:
.. math::
\text{exp}_{\text{adaptive}}({x}) = \alpha\,\text{exp}(\beta{x}),
where :math:`\alpha,\,\beta` are trainable parameters.
.. seealso::
**Original reference**: Godfrey, Luke B., and Michael S. Gashler.
*A continuum among logarithmic, linear, and exponential functions,
and its potential to improve generalization in neural networks.*
2015 7th international joint conference on knowledge discovery,
knowledge engineering and knowledge management (IC3K).
Vol. 1. IEEE, 2015. DOI: `arXiv preprint arXiv:1602.01321.
<https://arxiv.org/abs/1602.01321>`_.
Jagtap, Ameya D., Kenji Kawaguchi, and George Em Karniadakis. *Adaptive
activation functions accelerate convergence in deep and
physics-informed neural networks*. Journal of
Computational Physics 404 (2020): 109136.
DOI: `JCP 10.1016
<https://doi.org/10.1016/j.jcp.2019.109136>`_.
"""
def __init__(self, alpha=None, beta=None, fixed=None):
# only alpha, and beta parameters (gamma=0 fixed)
if fixed is None:
fixed = ["gamma"]
else:
check_consistency(fixed, str)
fixed = list(fixed) + ["gamma"]
# calling super
super().__init__(alpha, beta, 0.0, fixed)
self._func = torch.exp