RBF
Module for Radial Basis Function Interpolation.
- class RBF(kernel='thin_plate_spline', smooth=0, neighbors=None, epsilon=None, degree=None)[source]
Bases:
ApproximationMultidimensional interpolator using Radial Basis Function.
- Parameters:
kernel (str or callable) – The radial basis function; the default is ‘multiquadric’.
smooth (float) – values greater than zero increase the smoothness of the approximation. 0 is for interpolation (default), the function will always go through the nodal points in this case.
neighbors (int) – if specified, the value of the interpolant at each evaluation point will be computed using only the nearest data points. If None (default), all the data points are used by default.
epsilon (float) – Shape parameter that scales the input to the RBF. If kernel is ‘linear’, ‘thin_plate_spline’, ‘cubic’, or ‘quintic’, this defaults to 1 and can be ignored. Otherwise, this must be specified.
degree (int) – Degree of the added polynomial. The default value is the minimum degree for kernel or 0 if there is no minimum degree.
- Variables:
kernel – The radial basis function; the default is ‘multiquadric’.
interpolator – the RBF interpolator
- Example:
>>> import ezyrb >>> import numpy as np >>> >>> x = np.random.uniform(-1, 1, size=(4, 2)) >>> y = np.array([np.sin(x[:, 0]), np.cos(x[:, 1]**3)]).T >>> rbf = ezyrb.RBF() >>> rbf.fit(x, y) >>> y_pred = rbf.predict(x) >>> print(np.allclose(y, y_pred))
- _abc_impl = <_abc._abc_data object>
- fit(points, values)[source]
Construct the interpolator given points and values.
- Parameters:
points (array_like) – the coordinates of the points.
values (array_like) – the values in the points.
- predict(new_point)[source]
Evaluate interpolator at given new_points.
- Parameters:
new_points (array_like) – the coordinates of the given points.
- Returns:
the interpolated values.
- Return type: