GPR
Module wrapper exploiting GPy for Gaussian Process Regression
- class GPR(kern=None, normalizer=True, optimization_restart=20)[source]
Bases:
ApproximationMultidimensional regression using Gaussian process.
- Variables:
X_sample (numpy.ndarray) – the array containing the input points, arranged by row.
Y_sample (numpy.ndarray) – the array containing the output values, arranged by row.
model (sklearn.gaussian_process.GaussianProcessRegressor) – the regression model.
kern (sklearn.gaussian_process.kernels.Kernel) – kernel object from sklearn.
normalizer (bool) – whether to normilize values or not. Defaults to True.
optimization_restart (int) – number of restarts for the optimization. Defaults to 20.
- Example:
>>> import ezyrb >>> import numpy as np >>> x = np.random.uniform(-1, 1, size=(4, 2)) >>> y = (np.sin(x[:, 0]) + np.cos(x[:, 1]**3)).reshape(-1, 1) >>> gpr = ezyrb.GPR() >>> gpr.fit(x, y) >>> y_pred = gpr.predict(x) >>> print(np.allclose(y, y_pred))
Initialize a Gaussian Process Regressor.
- Parameters:
- _abc_impl = <_abc._abc_data object>
- fit(points, values)[source]
Construct the regression given points and values.
- Parameters:
points (array_like) – the coordinates of the points.
values (array_like) – the values in the points.
- optimal_mu(bounds, optimization_restart=10)[source]
Proposes the next sampling point by looking at the point where the Gaussian covariance is maximized. A gradient method (with multi starting points) is adopted for the optimization.
- Parameters:
bounds (numpy.ndarray) – the boundaries in the gradient optimization. The shape must be (input_dim, 2), where input_dim is the dimension of the input points.
optimization_restart (int) – the number of restart in the gradient optimization. Default is 10.
- predict(new_points, return_variance=False)[source]
Predict the mean and the variance of Gaussian distribution at given new_points.
- Parameters:
new_points (array_like) – the coordinates of the given points.
return_variance (bool) – flag to return also the variance. Default is False.
- Returns:
the mean and the variance
- Return type: