NeighborsRegressor
Module for generic NeighborsRegressor.
- class NeighborsRegressor[source]
Bases:
ApproximationA generic superclass for wrappers of *NeighborsRegressor from sklearn.
This class provides a common interface for neighbor-based regression methods.
- Parameters:
kwargs – Arguments passed to the internal instance of *NeighborsRegressor.
- Example:
>>> import numpy as np >>> from ezyrb import KNeighborsRegressor >>> x = np.random.uniform(-1, 1, size=(20, 2)) >>> y = np.sin(x[:, 0]) + np.cos(x[:, 1]) >>> knn = KNeighborsRegressor(n_neighbors=5) >>> knn.fit(x, y) >>> y_pred = knn.predict(x[:5])
- _abc_impl = <_abc._abc_data object>
- fit(points, values)[source]
Construct the interpolator given points and values.
- Parameters:
points (array_like) – the coordinates of the points.
values (array_like) – the values in the points.
- predict(new_point)[source]
Evaluate interpolator at given new_points.
- Parameters:
new_points (array_like) – the coordinates of the given points.
- Returns:
the interpolated values.
- Return type: