"""Module for the Self-Adaptive PINN solver."""
from copy import deepcopy
import torch
from ...utils import check_consistency
from ...problem import InverseProblem
from ..solver import MultiSolverInterface
from .pinn_interface import PINNInterface
class Weights(torch.nn.Module):
"""
Implementation of the mask model for the self-adaptive weights of the
:class:`SelfAdaptivePINN` solver.
"""
def __init__(self, func):
"""
Initialization of the :class:`Weights` class.
:param torch.nn.Module func: the mask model.
"""
super().__init__()
check_consistency(func, torch.nn.Module)
self.sa_weights = torch.nn.Parameter(torch.Tensor())
self.func = func
def forward(self):
"""
Forward pass implementation for the mask module.
:return: evaluation of self adaptive weights through the mask.
:rtype: torch.Tensor
"""
return self.func(self.sa_weights)
[docs]
class SelfAdaptivePINN(PINNInterface, MultiSolverInterface):
r"""
Self-Adaptive Physics-Informed Neural Network (SelfAdaptivePINN) solver
class. This class implements the Self-Adaptive Physics-Informed Neural
Network solver, using a user specified ``model`` to solve a specific
``problem``. It can be used to solve both forward and inverse problems.
The Self-Adapive Physics-Informed Neural Network solver aims to find the
solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential
problem:
.. math::
\begin{cases}
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
\mathbf{x}\in\partial\Omega
\end{cases}
integrating pointwise loss evaluation using a mask :math:m and self-adaptive
weights, which allow the model to focus on regions of the domain where the
residual is higher.
The loss function to solve the problem is
.. math::
\mathcal{L}_{\rm{problem}} = \frac{1}{N} \sum_{i=1}^{N_\Omega} m
\left( \lambda_{\Omega}^{i} \right) \mathcal{L} \left( \mathcal{A}
[\mathbf{u}](\mathbf{x}) \right) + \frac{1}{N}
\sum_{i=1}^{N_{\partial\Omega}}
m \left( \lambda_{\partial\Omega}^{i} \right) \mathcal{L}
\left( \mathcal{B}[\mathbf{u}](\mathbf{x})
\right),
denoting the self adaptive weights as
:math:`\lambda_{\Omega}^1, \dots, \lambda_{\Omega}^{N_\Omega}` and
:math:`\lambda_{\partial \Omega}^1, \dots,
\lambda_{\Omega}^{N_\partial \Omega}`
for :math:`\Omega` and :math:`\partial \Omega`, respectively.
The Self-Adaptive Physics-Informed Neural Network solver identifies the
solution and appropriate self adaptive weights by solving the following
optimization problem:
.. math::
\min_{w} \max_{\lambda_{\Omega}^k, \lambda_{\partial \Omega}^s}
\mathcal{L} ,
where :math:`w` denotes the network parameters, and :math:`\mathcal{L}` is a
specific loss function, , typically the MSE:
.. math::
\mathcal{L}(v) = \| v \|^2_2.
.. seealso::
**Original reference**: McClenny, Levi D., and Ulisses M. Braga-Neto.
*Self-adaptive physics-informed neural networks.*
Journal of Computational Physics 474 (2023): 111722.
DOI: `10.1016/j.jcp.2022.111722
<https://doi.org/10.1016/j.jcp.2022.111722>`_.
"""
def __init__(
self,
problem,
model,
weight_function=torch.nn.Sigmoid(),
optimizer_model=None,
optimizer_weights=None,
scheduler_model=None,
scheduler_weights=None,
weighting=None,
loss=None,
):
"""
Initialization of the :class:`SelfAdaptivePINN` class.
:param AbstractProblem problem: The problem to be solved.
:param torch.nn.Module model: The model to be used.
:param torch.nn.Module weight_function: The Self-Adaptive mask model.
Default is ``torch.nn.Sigmoid()``.
:param Optimizer optimizer_model: The optimizer of the ``model``.
If `None`, the :class:`torch.optim.Adam` optimizer is used.
Default is ``None``.
:param Optimizer optimizer_weights: The optimizer of the
``weight_function``.
If `None`, the :class:`torch.optim.Adam` optimizer is used.
Default is ``None``.
:param Scheduler scheduler_model: Learning rate scheduler for the
``model``.
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
scheduler is used. Default is ``None``.
:param Scheduler scheduler_weights: Learning rate scheduler for the
``weight_function``.
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
scheduler is used. Default is ``None``.
:param WeightingInterface weighting: The weighting schema to be used.
If `None`, no weighting schema is used. Default is ``None``.
:param torch.nn.Module loss: The loss function to be minimized.
If `None`, the :class:`torch.nn.MSELoss` loss is used.
Default is `None`.
"""
# check consistency weitghs_function
check_consistency(weight_function, torch.nn.Module)
# create models for weights
weights_dict = {}
for condition_name in problem.conditions:
weights_dict[condition_name] = Weights(weight_function)
weights_dict = torch.nn.ModuleDict(weights_dict)
super().__init__(
models=[model, weights_dict],
problem=problem,
optimizers=[optimizer_model, optimizer_weights],
schedulers=[scheduler_model, scheduler_weights],
weighting=weighting,
loss=loss,
)
# Set automatic optimization to False
self.automatic_optimization = False
self._vectorial_loss = deepcopy(self.loss)
self._vectorial_loss.reduction = "none"
[docs]
def forward(self, x):
"""
Forward pass.
:param LabelTensor x: Input tensor.
:return: The output of the neural network.
:rtype: LabelTensor
"""
return self.model(x)
[docs]
def training_step(self, batch):
"""
Solver training step, overridden to perform manual optimization.
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
tuple containing a condition name and a dictionary of points.
:return: The aggregated loss.
:rtype: LabelTensor
"""
# Weights optimization
self.optimizer_weights.instance.zero_grad()
loss = super().training_step(batch)
self.manual_backward(-loss)
self.optimizer_weights.instance.step()
# Model optimization
self.optimizer_model.instance.zero_grad()
loss = super().training_step(batch)
self.manual_backward(loss)
self.optimizer_model.instance.step()
return loss
[docs]
def on_train_batch_end(self, outputs, batch, batch_idx):
"""
This method is called at the end of each training batch and overrides
the PyTorch Lightning implementation to log checkpoints.
:param torch.Tensor outputs: The ``model``'s output for the current
batch.
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
tuple containing a condition name and a dictionary of points.
:param int batch_idx: The index of the current batch.
"""
# increase by one the counter of optimization to save loggers
(
self.trainer.fit_loop.epoch_loop.manual_optimization.optim_step_progress.total.completed
) += 1
return super().on_train_batch_end(outputs, batch, batch_idx)
[docs]
def on_train_start(self):
"""
This method is called at the start of the training process to set the
self-adaptive weights as parameters of the mask model.
:raises NotImplementedError: If the batch size is not ``None``.
"""
if self.trainer.batch_size is not None:
raise NotImplementedError(
"SelfAdaptivePINN only works with full "
"batch size, set batch_size=None inside "
"the Trainer to use the solver."
)
device = torch.device(
self.trainer._accelerator_connector._accelerator_flag
)
# Initialize the self adaptive weights only for training points
for (
condition_name,
tensor,
) in self.trainer.data_module.train_dataset.input.items():
self.weights_dict[condition_name].sa_weights.data = torch.rand(
(tensor.shape[0], 1), device=device
)
return super().on_train_start()
[docs]
def on_load_checkpoint(self, checkpoint):
"""
Override of the Pytorch Lightning ``on_load_checkpoint`` method to
handle checkpoints for Self-Adaptive Weights. This method should not be
overridden, if not intentionally.
:param dict checkpoint: Pytorch Lightning checkpoint dict.
"""
# First initialize self-adaptive weights with correct shape,
# then load the values from the checkpoint.
for condition_name, _ in self.problem.input_pts.items():
shape = checkpoint["state_dict"][
f"_pina_models.1.{condition_name}.sa_weights"
].shape
self.weights_dict[condition_name].sa_weights.data = torch.rand(
shape
)
return super().on_load_checkpoint(checkpoint)
[docs]
def loss_phys(self, samples, equation):
"""
Computes the physics loss for the physics-informed solver based on the
provided samples and equation.
:param LabelTensor samples: The samples to evaluate the physics loss.
:param EquationInterface equation: The governing equation.
:return: The computed physics loss.
:rtype: LabelTensor
"""
residual = self.compute_residual(samples, equation)
weights = self.weights_dict[self.current_condition_name].forward()
loss_value = self._vectorial_loss(
torch.zeros_like(residual, requires_grad=True), residual
)
return self._vect_to_scalar(weights * loss_value)
def _vect_to_scalar(self, loss_value):
"""
Computation of the scalar loss.
:param LabelTensor loss_value: the tensor of pointwise losses.
:raises RuntimeError: If the loss reduction is not ``mean`` or ``sum``.
:return: The computed scalar loss.
:rtype: LabelTensor
"""
if self.loss.reduction == "mean":
ret = torch.mean(loss_value)
elif self.loss.reduction == "sum":
ret = torch.sum(loss_value)
else:
raise RuntimeError(
f"Invalid reduction, got {self.loss.reduction} "
"but expected mean or sum."
)
return ret
@property
def model(self):
"""
The model.
:return: The model.
:rtype: torch.nn.Module
"""
return self.models[0]
@property
def weights_dict(self):
"""
The self-adaptive weights.
:return: The self-adaptive weights.
:rtype: torch.nn.Module
"""
return self.models[1]
@property
def scheduler_model(self):
"""
The scheduler associated to the model.
:return: The scheduler for the model.
:rtype: Scheduler
"""
return self.schedulers[0]
@property
def scheduler_weights(self):
"""
The scheduler associated to the mask model.
:return: The scheduler for the mask model.
:rtype: Scheduler
"""
return self.schedulers[1]
@property
def optimizer_model(self):
"""
Returns the optimizer associated to the model.
:return: The optimizer for the model.
:rtype: Optimizer
"""
return self.optimizers[0]
@property
def optimizer_weights(self):
"""
The optimizer associated to the mask model.
:return: The optimizer for the mask model.
:rtype: Optimizer
"""
return self.optimizers[1]