"""Module for the Self-Adaptive PINN solver."""
from copy import deepcopy
import torch
from ...utils import check_consistency
from ...problem import InverseProblem
from ..solver import MultiSolverInterface
from .pinn_interface import PINNInterface
class Weights(torch.nn.Module):
"""
Implementation of the mask model for the self-adaptive weights of the
:class:`SelfAdaptivePINN` solver.
"""
def __init__(self, func, num_points):
"""
Initialization of the :class:`Weights` class.
:param torch.nn.Module func: the mask model.
:param int num_points: the number of input points.
"""
super().__init__()
# Check consistency
check_consistency(func, torch.nn.Module)
# Initialize the weights as a learnable parameter
self.sa_weights = torch.nn.Parameter(torch.zeros(num_points, 1))
self.func = func
def forward(self):
"""
Forward pass implementation for the mask module.
:return: evaluation of self adaptive weights through the mask.
:rtype: torch.Tensor
"""
return self.func(self.sa_weights)
[docs]
class SelfAdaptivePINN(PINNInterface, MultiSolverInterface):
r"""
Self-Adaptive Physics-Informed Neural Network (SelfAdaptivePINN) solver
class. This class implements the Self-Adaptive Physics-Informed Neural
Network solver, using a user specified ``model`` to solve a specific
``problem``. It can be used to solve both forward and inverse problems.
The Self-Adapive Physics-Informed Neural Network solver aims to find the
solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential
problem:
.. math::
\begin{cases}
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
\mathbf{x}\in\partial\Omega
\end{cases}
integrating pointwise loss evaluation using a mask :math:m and self-adaptive
weights, which allow the model to focus on regions of the domain where the
residual is higher.
The loss function to solve the problem is
.. math::
\mathcal{L}_{\rm{problem}} = \frac{1}{N} \sum_{i=1}^{N_\Omega} m
\left( \lambda_{\Omega}^{i} \right) \mathcal{L} \left( \mathcal{A}
[\mathbf{u}](\mathbf{x}) \right) + \frac{1}{N}
\sum_{i=1}^{N_{\partial\Omega}}
m \left( \lambda_{\partial\Omega}^{i} \right) \mathcal{L}
\left( \mathcal{B}[\mathbf{u}](\mathbf{x})
\right),
denoting the self adaptive weights as
:math:`\lambda_{\Omega}^1, \dots, \lambda_{\Omega}^{N_\Omega}` and
:math:`\lambda_{\partial \Omega}^1, \dots,
\lambda_{\Omega}^{N_\partial \Omega}`
for :math:`\Omega` and :math:`\partial \Omega`, respectively.
The Self-Adaptive Physics-Informed Neural Network solver identifies the
solution and appropriate self adaptive weights by solving the following
optimization problem:
.. math::
\min_{w} \max_{\lambda_{\Omega}^k, \lambda_{\partial \Omega}^s}
\mathcal{L} ,
where :math:`w` denotes the network parameters, and :math:`\mathcal{L}` is a
specific loss function, , typically the MSE:
.. math::
\mathcal{L}(v) = \| v \|^2_2.
.. seealso::
**Original reference**: McClenny, Levi D., and Ulisses M. Braga-Neto.
*Self-adaptive physics-informed neural networks.*
Journal of Computational Physics 474 (2023): 111722.
DOI: `10.1016/j.jcp.2022.111722
<https://doi.org/10.1016/j.jcp.2022.111722>`_.
"""
def __init__(
self,
problem,
model,
weight_function=torch.nn.Sigmoid(),
optimizer_model=None,
optimizer_weights=None,
scheduler_model=None,
scheduler_weights=None,
weighting=None,
loss=None,
):
"""
Initialization of the :class:`SelfAdaptivePINN` class.
:param AbstractProblem problem: The problem to be solved.
:param torch.nn.Module model: The model to be used.
:param torch.nn.Module weight_function: The Self-Adaptive mask model.
Default is ``torch.nn.Sigmoid()``.
:param Optimizer optimizer_model: The optimizer of the ``model``.
If ``None``, the :class:`torch.optim.Adam` optimizer is used.
Default is ``None``.
:param Optimizer optimizer_weights: The optimizer of the
``weight_function``.
If ``None``, the :class:`torch.optim.Adam` optimizer is used.
Default is ``None``.
:param Scheduler scheduler_model: Learning rate scheduler for the
``model``.
If ``None``, the :class:`torch.optim.lr_scheduler.ConstantLR`
scheduler is used. Default is ``None``.
:param Scheduler scheduler_weights: Learning rate scheduler for the
``weight_function``.
If ``None``, the :class:`torch.optim.lr_scheduler.ConstantLR`
scheduler is used. Default is ``None``.
:param WeightingInterface weighting: The weighting schema to be used.
If ``None``, no weighting schema is used. Default is ``None``.
:param torch.nn.Module loss: The loss function to be minimized.
If ``None``, the :class:`torch.nn.MSELoss` loss is used.
Default is `None`.
"""
# Check consistency
check_consistency(weight_function, torch.nn.Module)
# Define a ModuleDict for the weights
weights = {}
for cond, data in problem.input_pts.items():
weights[cond] = Weights(func=weight_function, num_points=len(data))
weights = torch.nn.ModuleDict(weights)
super().__init__(
models=[model, weights],
problem=problem,
optimizers=[optimizer_model, optimizer_weights],
schedulers=[scheduler_model, scheduler_weights],
weighting=weighting,
loss=loss,
)
# Extract the reduction method from the loss function
self._reduction = self._loss_fn.reduction
# Set the loss function to return non-aggregated losses
self._loss_fn = type(self._loss_fn)(reduction="none")
[docs]
def training_step(self, batch, batch_idx, **kwargs):
"""
Solver training step. It computes the optimization cycle and aggregates
the losses using the ``weighting`` attribute.
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
tuple containing a condition name and a dictionary of points.
:param int batch_idx: The index of the current batch.
:param dict kwargs: Additional keyword arguments passed to
``optimization_cycle``.
:return: The loss of the training step.
:rtype: torch.Tensor
"""
# Weights optimization
self.optimizer_weights.instance.zero_grad()
loss = self._optimization_cycle(
batch=batch, batch_idx=batch_idx, **kwargs
)
self.manual_backward(-loss)
self.optimizer_weights.instance.step()
self.scheduler_weights.instance.step()
# Model optimization
self.optimizer_model.instance.zero_grad()
loss = self._optimization_cycle(
batch=batch, batch_idx=batch_idx, **kwargs
)
self.manual_backward(loss)
self.optimizer_model.instance.step()
self.scheduler_model.instance.step()
# Log the loss
self.store_log("train_loss", loss, self.get_batch_size(batch))
return loss
[docs]
@torch.set_grad_enabled(True)
def validation_step(self, batch, **kwargs):
"""
The validation step for the Self-Adaptive PINN solver. It returns the
average residual computed with the ``loss`` function not aggregated.
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
tuple containing a condition name and a dictionary of points.
:param dict kwargs: Additional keyword arguments passed to
``optimization_cycle``.
:return: The loss of the validation step.
:rtype: torch.Tensor
"""
losses = self.optimization_cycle(batch=batch, **kwargs)
# Aggregate losses for each condition
for cond, loss in losses.items():
losses[cond] = self._apply_reduction(loss=losses[cond])
loss = (sum(losses.values()) / len(losses)).as_subclass(torch.Tensor)
self.store_log("val_loss", loss, self.get_batch_size(batch))
return loss
[docs]
@torch.set_grad_enabled(True)
def test_step(self, batch, **kwargs):
"""
The test step for the Self-Adaptive PINN solver. It returns the average
residual computed with the ``loss`` function not aggregated.
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
tuple containing a condition name and a dictionary of points.
:param dict kwargs: Additional keyword arguments passed to
``optimization_cycle``.
:return: The loss of the test step.
:rtype: torch.Tensor
"""
losses = self.optimization_cycle(batch=batch, **kwargs)
# Aggregate losses for each condition
for cond, loss in losses.items():
losses[cond] = self._apply_reduction(loss=losses[cond])
loss = (sum(losses.values()) / len(losses)).as_subclass(torch.Tensor)
self.store_log("test_loss", loss, self.get_batch_size(batch))
return loss
[docs]
def loss_phys(self, samples, equation):
"""
Computes the physics loss for the physics-informed solver based on the
provided samples and equation.
:param LabelTensor samples: The samples to evaluate the physics loss.
:param EquationInterface equation: The governing equation.
:return: The computed physics loss.
:rtype: LabelTensor
"""
residuals = self.compute_residual(samples, equation)
return self._loss_fn(residuals, torch.zeros_like(residuals))
[docs]
def loss_data(self, input, target):
"""
Compute the data loss for the Self-Adaptive PINN solver by evaluating
the loss between the network's output and the true solution. This method
should not be overridden, if not intentionally.
:param input: The input to the neural network.
:type input: LabelTensor | torch.Tensor
:param target: The target to compare with the network's output.
:type target: LabelTensor | torch.Tensor
:return: The supervised loss, averaged over the number of observations.
:rtype: LabelTensor | torch.Tensor
"""
return self._loss_fn(self.forward(input), target)
[docs]
def forward(self, x):
"""
Forward pass.
:param x: Input tensor.
:type x: torch.Tensor | LabelTensor
:return: The output of the neural network.
:rtype: torch.Tensor | LabelTensor
"""
return self.model(x)
def _optimization_cycle(self, batch, batch_idx, **kwargs):
"""
Aggregate the loss for each condition in the batch.
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
tuple containing a condition name and a dictionary of points.
:param int batch_idx: The index of the current batch.
:param dict kwargs: Additional keyword arguments passed to
``optimization_cycle``.
:return: The losses computed for all conditions in the batch, casted
to a subclass of :class:`torch.Tensor`. It should return a dict
containing the condition name and the associated scalar loss.
:rtype: dict
"""
# Compute non-aggregated residuals
residuals = self.optimization_cycle(batch)
# Compute losses
losses = {}
for cond, res in residuals.items():
weight_tensor = self.weights[cond]()
# Get the correct indices for the weights. Modulus is used according
# to the number of points in the condition, as in the PinaDataset.
len_res = len(res)
idx = torch.arange(
batch_idx * len_res,
(batch_idx + 1) * len_res,
device=res.device,
) % len(self.problem.input_pts[cond])
# Apply the weights to the residuals
losses[cond] = self._apply_reduction(
loss=(res * weight_tensor[idx])
)
# Store log
self.store_log(
f"{cond}_loss", losses[cond].item(), self.get_batch_size(batch)
)
# Clamp unknown parameters in InverseProblem (if needed)
self._clamp_params()
# Aggregate
loss = self.weighting.aggregate(losses).as_subclass(torch.Tensor)
return loss
def _apply_reduction(self, loss):
"""
Apply the specified reduction to the loss. The reduction is deferred
until the end of the optimization cycle to allow self-adaptive weights
to be applied to each point beforehand.
:param torch.Tensor loss: The loss tensor to be reduced.
:return: The reduced loss tensor.
:rtype: torch.Tensor
:raises ValueError: If the reduction method is neither "mean" nor "sum".
"""
# Apply the specified reduction method
if self._reduction == "mean":
return loss.mean()
if self._reduction == "sum":
return loss.sum()
# Raise an error if the reduction method is not recognized
raise ValueError(
f"Unknown reduction: {self._reduction}."
" Supported reductions are 'mean' and 'sum'."
)
@property
def model(self):
"""
The model.
:return: The model.
:rtype: torch.nn.Module
"""
return self.models[0]
@property
def weights(self):
"""
The self-adaptive weights.
:return: The self-adaptive weights.
:rtype: torch.nn.Module
"""
return self.models[1]
@property
def scheduler_model(self):
"""
The scheduler associated to the model.
:return: The scheduler for the model.
:rtype: Scheduler
"""
return self.schedulers[0]
@property
def scheduler_weights(self):
"""
The scheduler associated to the mask model.
:return: The scheduler for the mask model.
:rtype: Scheduler
"""
return self.schedulers[1]
@property
def optimizer_model(self):
"""
Returns the optimizer associated to the model.
:return: The optimizer for the model.
:rtype: Optimizer
"""
return self.optimizers[0]
@property
def optimizer_weights(self):
"""
The optimizer associated to the mask model.
:return: The optimizer for the mask model.
:rtype: Optimizer
"""
return self.optimizers[1]