"""Module for the Residual-Based Attention PINN solver."""
from copy import deepcopy
import torch
from .pinn import PINN
from ...utils import check_consistency
[docs]
class RBAPINN(PINN):
r"""
Residual-based Attention Physics-Informed Neural Network (RBAPINN) solver
class. This class implements the Residual-based Attention Physics-Informed
Neural Network solver, using a user specified ``model`` to solve a specific
``problem``. It can be used to solve both forward and inverse problems.
The Residual-based Attention Physics-Informed Neural Network solver aims to
find the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a
differential problem:
.. math::
\begin{cases}
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
\mathbf{x}\in\partial\Omega
\end{cases}
minimizing the loss function:
.. math::
\mathcal{L}_{\rm{problem}} = \frac{1}{N} \sum_{i=1}^{N_\Omega}
\lambda_{\Omega}^{i} \mathcal{L} \left( \mathcal{A}
[\mathbf{u}](\mathbf{x}) \right) + \frac{1}{N}
\sum_{i=1}^{N_{\partial\Omega}}
\lambda_{\partial\Omega}^{i} \mathcal{L}
\left( \mathcal{B}[\mathbf{u}](\mathbf{x})
\right),
denoting the weights as:
:math:`\lambda_{\Omega}^1, \dots, \lambda_{\Omega}^{N_\Omega}` and
:math:`\lambda_{\partial \Omega}^1, \dots,
\lambda_{\Omega}^{N_\partial \Omega}`
for :math:`\Omega` and :math:`\partial \Omega`, respectively.
Residual-based Attention Physics-Informed Neural Network updates the weights
of the residuals at every epoch as follows:
.. math::
\lambda_i^{k+1} \leftarrow \gamma\lambda_i^{k} +
\eta\frac{\lvert r_i\rvert}{\max_j \lvert r_j\rvert},
where :math:`r_i` denotes the residual at point :math:`i`, :math:`\gamma`
denotes the decay rate, and :math:`\eta` is the learning rate for the
weights' update.
.. seealso::
**Original reference**: Sokratis J. Anagnostopoulos, Juan D. Toscano,
Nikolaos Stergiopulos, and George E. Karniadakis.
*Residual-based attention and connection to information
bottleneck theory in PINNs.*
Computer Methods in Applied Mechanics and Engineering 421 (2024): 116805
DOI: `10.1016/j.cma.2024.116805
<https://doi.org/10.1016/j.cma.2024.116805>`_.
"""
def __init__(
self,
problem,
model,
optimizer=None,
scheduler=None,
weighting=None,
loss=None,
eta=0.001,
gamma=0.999,
):
"""
Initialization of the :class:`RBAPINN` class.
:param AbstractProblem problem: The problem to be solved.
:param torch.nn.Module model: The neural network model to be used.
:param Optimizer optimizer: The optimizer to be used.
If `None`, the :class:`torch.optim.Adam` optimizer is used.
Default is ``None``.
:param Scheduler scheduler: Learning rate scheduler.
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
scheduler is used. Default is ``None``.
:param WeightingInterface weighting: The weighting schema to be used.
If `None`, no weighting schema is used. Default is ``None``.
:param torch.nn.Module loss: The loss function to be minimized.
If `None`, the :class:`torch.nn.MSELoss` loss is used.
Default is `None`.
:param float | int eta: The learning rate for the weights of the
residuals. Default is ``0.001``.
:param float gamma: The decay parameter in the update of the weights
of the residuals. Must be between ``0`` and ``1``.
Default is ``0.999``.
"""
super().__init__(
model=model,
problem=problem,
optimizer=optimizer,
scheduler=scheduler,
weighting=weighting,
loss=loss,
)
# check consistency
check_consistency(eta, (float, int))
check_consistency(gamma, float)
assert (
0 < gamma < 1
), f"Invalid range: expected 0 < gamma < 1, got {gamma=}"
self.eta = eta
self.gamma = gamma
# initialize weights
self.weights = {}
for condition_name in problem.conditions:
self.weights[condition_name] = 0
# define vectorial loss
self._vectorial_loss = deepcopy(self.loss)
self._vectorial_loss.reduction = "none"
# for now RBAPINN is implemented only for batch_size = None
[docs]
def on_train_start(self):
"""
Hook method called at the beginning of training.
:raises NotImplementedError: If the batch size is not ``None``.
"""
if self.trainer.batch_size is not None:
raise NotImplementedError(
"RBAPINN only works with full batch "
"size, set batch_size=None inside the "
"Trainer to use the solver."
)
return super().on_train_start()
def _vect_to_scalar(self, loss_value):
"""
Computation of the scalar loss.
:param LabelTensor loss_value: the tensor of pointwise losses.
:raises RuntimeError: If the loss reduction is not ``mean`` or ``sum``.
:return: The computed scalar loss.
:rtype: LabelTensor
"""
if self.loss.reduction == "mean":
ret = torch.mean(loss_value)
elif self.loss.reduction == "sum":
ret = torch.sum(loss_value)
else:
raise RuntimeError(
f"Invalid reduction, got {self.loss.reduction} "
"but expected mean or sum."
)
return ret
[docs]
def loss_phys(self, samples, equation):
"""
Computes the physics loss for the physics-informed solver based on the
provided samples and equation.
:param LabelTensor samples: The samples to evaluate the physics loss.
:param EquationInterface equation: The governing equation.
:return: The computed physics loss.
:rtype: LabelTensor
"""
residual = self.compute_residual(samples=samples, equation=equation)
cond = self.current_condition_name
r_norm = (
self.eta
* torch.abs(residual)
/ (torch.max(torch.abs(residual)) + 1e-12)
)
self.weights[cond] = (self.gamma * self.weights[cond] + r_norm).detach()
loss_value = self._vectorial_loss(
torch.zeros_like(residual, requires_grad=True), residual
)
return self._vect_to_scalar(self.weights[cond] ** 2 * loss_value)