Source code for pina.solver.physics_informed_solver.pinn

"""Module for the Physics-Informed Neural Network solver."""

import torch

from .pinn_interface import PINNInterface
from ..solver import SingleSolverInterface
from ...problem import InverseProblem


[docs] class PINN(PINNInterface, SingleSolverInterface): r""" Physics-Informed Neural Network (PINN) solver class. This class implements Physics-Informed Neural Network solver, using a user specified ``model`` to solve a specific ``problem``. It can be used to solve both forward and inverse problems. The Physics Informed Neural Network solver aims to find the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential problem: .. math:: \begin{cases} \mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\ \mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad, \mathbf{x}\in\partial\Omega \end{cases} minimizing the loss function: .. math:: \mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^N \mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) + \frac{1}{N}\sum_{i=1}^N \mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i)), where :math:`\mathcal{L}` is a specific loss function, typically the MSE: .. math:: \mathcal{L}(v) = \| v \|^2_2. .. seealso:: **Original reference**: Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). *Physics-informed machine learning.* Nature Reviews Physics, 3, 422-440. DOI: `10.1038 <https://doi.org/10.1038/s42254-021-00314-5>`_. """ def __init__( self, problem, model, optimizer=None, scheduler=None, weighting=None, loss=None, ): """ Initialization of the :class:`PINN` class. :param AbstractProblem problem: The problem to be solved. :param torch.nn.Module model: The neural network model to be used. :param Optimizer optimizer: The optimizer to be used. If `None`, the :class:`torch.optim.Adam` optimizer is used. Default is ``None``. :param Scheduler scheduler: Learning rate scheduler. If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR` scheduler is used. Default is ``None``. :param WeightingInterface weighting: The weighting schema to be used. If `None`, no weighting schema is used. Default is ``None``. :param torch.nn.Module loss: The loss function to be minimized. If `None`, the :class:`torch.nn.MSELoss` loss is used. Default is `None`. """ super().__init__( model=model, problem=problem, optimizer=optimizer, scheduler=scheduler, weighting=weighting, loss=loss, )
[docs] def loss_phys(self, samples, equation): """ Computes the physics loss for the physics-informed solver based on the provided samples and equation. :param LabelTensor samples: The samples to evaluate the physics loss. :param EquationInterface equation: The governing equation. :return: The computed physics loss. :rtype: LabelTensor """ residual = self.compute_residual(samples=samples, equation=equation) loss_value = self.loss( torch.zeros_like(residual, requires_grad=True), residual ) return loss_value
[docs] def configure_optimizers(self): """ Optimizer configuration for the PINN solver. :return: The optimizers and the schedulers :rtype: tuple[list[Optimizer], list[Scheduler]] """ # If the problem is an InverseProblem, add the unknown parameters # to the parameters to be optimized. self.optimizer.hook(self.model.parameters()) if isinstance(self.problem, InverseProblem): self.optimizer.instance.add_param_group( { "params": [ self._params[var] for var in self.problem.unknown_variables ] } ) self.scheduler.hook(self.optimizer) return ([self.optimizer.instance], [self.scheduler.instance])