"""Module for the Physics-Informed Neural Network solver."""
import torch
from .pinn_interface import PINNInterface
from ..solver import SingleSolverInterface
from ...problem import InverseProblem
[docs]
class PINN(PINNInterface, SingleSolverInterface):
r"""
Physics-Informed Neural Network (PINN) solver class.
This class implements Physics-Informed Neural Network solver, using a user
specified ``model`` to solve a specific ``problem``.
It can be used to solve both forward and inverse problems.
The Physics Informed Neural Network solver aims to find the solution
:math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential problem:
.. math::
\begin{cases}
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
\mathbf{x}\in\partial\Omega
\end{cases}
minimizing the loss function:
.. math::
\mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^N
\mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) +
\frac{1}{N}\sum_{i=1}^N
\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i)),
where :math:`\mathcal{L}` is a specific loss function, typically the MSE:
.. math::
\mathcal{L}(v) = \| v \|^2_2.
.. seealso::
**Original reference**: Karniadakis, G. E., Kevrekidis, I. G., Lu, L.,
Perdikaris, P., Wang, S., & Yang, L. (2021).
*Physics-informed machine learning.*
Nature Reviews Physics, 3, 422-440.
DOI: `10.1038 <https://doi.org/10.1038/s42254-021-00314-5>`_.
"""
def __init__(
self,
problem,
model,
optimizer=None,
scheduler=None,
weighting=None,
loss=None,
):
"""
Initialization of the :class:`PINN` class.
:param AbstractProblem problem: The problem to be solved.
:param torch.nn.Module model: The neural network model to be used.
:param Optimizer optimizer: The optimizer to be used.
If ``None``, the :class:`torch.optim.Adam` optimizer is used.
Default is ``None``.
:param Scheduler scheduler: Learning rate scheduler.
If ``None``, the :class:`torch.optim.lr_scheduler.ConstantLR`
scheduler is used. Default is ``None``.
:param WeightingInterface weighting: The weighting schema to be used.
If ``None``, no weighting schema is used. Default is ``None``.
:param torch.nn.Module loss: The loss function to be minimized.
If ``None``, the :class:`torch.nn.MSELoss` loss is used.
Default is `None`.
"""
super().__init__(
model=model,
problem=problem,
optimizer=optimizer,
scheduler=scheduler,
weighting=weighting,
loss=loss,
)
[docs]
def loss_data(self, input, target):
"""
Compute the data loss for the PINN solver by evaluating the loss
between the network's output and the true solution. This method should
not be overridden, if not intentionally.
:param input: The input to the neural network.
:type input: LabelTensor
:param target: The target to compare with the network's output.
:type target: LabelTensor
:return: The supervised loss, averaged over the number of observations.
:rtype: LabelTensor
"""
return self._loss_fn(self.forward(input), target)
[docs]
def loss_phys(self, samples, equation):
"""
Computes the physics loss for the physics-informed solver based on the
provided samples and equation.
:param LabelTensor samples: The samples to evaluate the physics loss.
:param EquationInterface equation: The governing equation.
:return: The computed physics loss.
:rtype: LabelTensor
"""
residuals = self.compute_residual(samples, equation)
return self._loss_fn(residuals, torch.zeros_like(residuals))