Source code for pina.solver.physics_informed_solver.gradient_pinn
"""Module for the Gradient PINN solver."""
import torch
from .pinn import PINN
from ...operator import grad
from ...problem import SpatialProblem
[docs]
class GradientPINN(PINN):
r"""
Gradient Physics-Informed Neural Network (GradientPINN) solver class.
This class implements the Gradient Physics-Informed Neural Network solver,
using a user specified ``model`` to solve a specific ``problem``.
It can be used to solve both forward and inverse problems.
The Gradient Physics-Informed Neural Network solver aims to find the
solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential
problem:
.. math::
\begin{cases}
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
\mathbf{x}\in\partial\Omega
\end{cases}
minimizing the loss function;
.. math::
\mathcal{L}_{\rm{problem}} =& \frac{1}{N}\sum_{i=1}^N
\mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) +
\frac{1}{N}\sum_{i=1}^N
\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i)) +
&\frac{1}{N}\sum_{i=1}^N
\nabla_{\mathbf{x}}\mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) +
\frac{1}{N}\sum_{i=1}^N
\nabla_{\mathbf{x}}\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i))
where :math:`\mathcal{L}` is a specific loss function, typically the MSE:
.. math::
\mathcal{L}(v) = \| v \|^2_2.
.. seealso::
**Original reference**: Yu, Jeremy, et al.
*Gradient-enhanced physics-informed neural networks for forward and
inverse PDE problems.*
Computer Methods in Applied Mechanics and Engineering 393 (2022):114823.
DOI: `10.1016 <https://doi.org/10.1016/j.cma.2022.114823>`_.
.. note::
This class is only compatible with problems that inherit from the
:class:`~pina.problem.spatial_problem.SpatialProblem` class.
"""
def __init__(
self,
problem,
model,
optimizer=None,
scheduler=None,
weighting=None,
loss=None,
):
"""
Initialization of the :class:`GradientPINN` class.
:param AbstractProblem problem: The problem to be solved.
It must inherit from at least
:class:`~pina.problem.spatial_problem.SpatialProblem` to compute the
gradient of the loss.
:param torch.nn.Module model: The neural network model to be used.
:param Optimizer optimizer: The optimizer to be used.
If `None`, the :class:`torch.optim.Adam` optimizer is used.
Default is ``None``.
:param Scheduler scheduler: Learning rate scheduler.
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
scheduler is used. Default is ``None``.
:param WeightingInterface weighting: The weighting schema to be used.
If `None`, no weighting schema is used. Default is ``None``.
:param torch.nn.Module loss: The loss function to be minimized.
If `None`, the :class:`torch.nn.MSELoss` loss is used.
Default is `None`.
:raises ValueError: If the problem is not a SpatialProblem.
"""
super().__init__(
model=model,
problem=problem,
optimizer=optimizer,
scheduler=scheduler,
weighting=weighting,
loss=loss,
)
if not isinstance(self.problem, SpatialProblem):
raise ValueError(
"Gradient PINN computes the gradient of the "
"PINN loss with respect to the spatial "
"coordinates, thus the PINA problem must be "
"a SpatialProblem."
)
[docs]
def loss_phys(self, samples, equation):
"""
Computes the physics loss for the physics-informed solver based on the
provided samples and equation.
:param LabelTensor samples: The samples to evaluate the physics loss.
:param EquationInterface equation: The governing equation.
:return: The computed physics loss.
:rtype: LabelTensor
"""
# classical PINN loss
residual = self.compute_residual(samples=samples, equation=equation)
loss_value = self.loss(
torch.zeros_like(residual, requires_grad=True), residual
)
# gradient PINN loss
loss_value = loss_value.reshape(-1, 1)
loss_value.labels = ["__loss"]
loss_grad = grad(loss_value, samples, d=self.problem.spatial_variables)
g_loss_phys = self.loss(
torch.zeros_like(loss_grad, requires_grad=True), loss_grad
)
return loss_value + g_loss_phys