Source code for pina.solver.physics_informed_solver.gradient_pinn

"""Module for the Gradient PINN solver."""

import torch

from .pinn import PINN
from ...operator import grad
from ...problem import SpatialProblem


[docs] class GradientPINN(PINN): r""" Gradient Physics-Informed Neural Network (GradientPINN) solver class. This class implements the Gradient Physics-Informed Neural Network solver, using a user specified ``model`` to solve a specific ``problem``. It can be used to solve both forward and inverse problems. The Gradient Physics-Informed Neural Network solver aims to find the solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential problem: .. math:: \begin{cases} \mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\ \mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad, \mathbf{x}\in\partial\Omega \end{cases} minimizing the loss function; .. math:: \mathcal{L}_{\rm{problem}} =& \frac{1}{N}\sum_{i=1}^N \mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) + \frac{1}{N}\sum_{i=1}^N \mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i)) + &\frac{1}{N}\sum_{i=1}^N \nabla_{\mathbf{x}}\mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) + \frac{1}{N}\sum_{i=1}^N \nabla_{\mathbf{x}}\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i)) where :math:`\mathcal{L}` is a specific loss function, typically the MSE: .. math:: \mathcal{L}(v) = \| v \|^2_2. .. seealso:: **Original reference**: Yu, Jeremy, et al. *Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems.* Computer Methods in Applied Mechanics and Engineering 393 (2022):114823. DOI: `10.1016 <https://doi.org/10.1016/j.cma.2022.114823>`_. .. note:: This class is only compatible with problems that inherit from the :class:`~pina.problem.spatial_problem.SpatialProblem` class. """ def __init__( self, problem, model, optimizer=None, scheduler=None, weighting=None, loss=None, ): """ Initialization of the :class:`GradientPINN` class. :param AbstractProblem problem: The problem to be solved. It must inherit from at least :class:`~pina.problem.spatial_problem.SpatialProblem` to compute the gradient of the loss. :param torch.nn.Module model: The neural network model to be used. :param Optimizer optimizer: The optimizer to be used. If `None`, the :class:`torch.optim.Adam` optimizer is used. Default is ``None``. :param Scheduler scheduler: Learning rate scheduler. If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR` scheduler is used. Default is ``None``. :param WeightingInterface weighting: The weighting schema to be used. If `None`, no weighting schema is used. Default is ``None``. :param torch.nn.Module loss: The loss function to be minimized. If `None`, the :class:`torch.nn.MSELoss` loss is used. Default is `None`. :raises ValueError: If the problem is not a SpatialProblem. """ super().__init__( model=model, problem=problem, optimizer=optimizer, scheduler=scheduler, weighting=weighting, loss=loss, ) if not isinstance(self.problem, SpatialProblem): raise ValueError( "Gradient PINN computes the gradient of the " "PINN loss with respect to the spatial " "coordinates, thus the PINA problem must be " "a SpatialProblem." )
[docs] def loss_phys(self, samples, equation): """ Computes the physics loss for the physics-informed solver based on the provided samples and equation. :param LabelTensor samples: The samples to evaluate the physics loss. :param EquationInterface equation: The governing equation. :return: The computed physics loss. :rtype: LabelTensor """ # classical PINN loss residual = self.compute_residual(samples=samples, equation=equation) loss_value = self.loss( torch.zeros_like(residual, requires_grad=True), residual ) # gradient PINN loss loss_value = loss_value.reshape(-1, 1) loss_value.labels = ["__loss"] loss_grad = grad(loss_value, samples, d=self.problem.spatial_variables) g_loss_phys = self.loss( torch.zeros_like(loss_grad, requires_grad=True), loss_grad ) return loss_value + g_loss_phys