"""Module for the Competitive PINN solver."""
import copy
import torch
from ...problem import InverseProblem
from .pinn_interface import PINNInterface
from ..solver import MultiSolverInterface
[docs]
class CompetitivePINN(PINNInterface, MultiSolverInterface):
r"""
Competitive Physics-Informed Neural Network (CompetitivePINN) solver class.
This class implements the Competitive Physics-Informed Neural Network
solver, using a user specified ``model`` to solve a specific ``problem``.
It can be used to solve both forward and inverse problems.
The Competitive Physics-Informed Neural Network solver aims to find the
solution :math:`\mathbf{u}:\Omega\rightarrow\mathbb{R}^m` of a differential
problem:
.. math::
\begin{cases}
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
\mathbf{x}\in\partial\Omega
\end{cases}
minimizing the loss function with respect to the model parameters, while
maximizing it with respect to the discriminator parameters:
.. math::
\mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^N
\mathcal{L}(D(\mathbf{x}_i)\mathcal{A}[\mathbf{u}](\mathbf{x}_i))+
\frac{1}{N}\sum_{i=1}^N
\mathcal{L}(D(\mathbf{x}_i)\mathcal{B}[\mathbf{u}](\mathbf{x}_i)),
where :math:D is the discriminator network, which identifies the points
where the model performs worst, and :math:\mathcal{L} is a specific loss
function, typically the MSE:
.. math::
\mathcal{L}(v) = \| v \|^2_2.
.. seealso::
**Original reference**: Zeng, Qi, et al.
*Competitive physics informed networks.*
International Conference on Learning Representations, ICLR 2022
`OpenReview Preprint <https://openreview.net/forum?id=z9SIj-IM7tn>`_.
"""
def __init__(
self,
problem,
model,
discriminator=None,
optimizer_model=None,
optimizer_discriminator=None,
scheduler_model=None,
scheduler_discriminator=None,
weighting=None,
loss=None,
):
"""
Initialization of the :class:`CompetitivePINN` class.
:param AbstractProblem problem: The problem to be solved.
:param torch.nn.Module model: The neural network model to be used.
:param torch.nn.Module discriminator: The discriminator to be used.
If `None`, the discriminator is a deepcopy of the ``model``.
Default is ``None``.
:param torch.optim.Optimizer optimizer_model: The optimizer of the
``model``. If `None`, the :class:`torch.optim.Adam` optimizer is
used. Default is ``None``.
:param torch.optim.Optimizer optimizer_discriminator: The optimizer of
the ``discriminator``. If `None`, the :class:`torch.optim.Adam`
optimizer is used. Default is ``None``.
:param Scheduler scheduler_model: Learning rate scheduler for the
``model``.
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
scheduler is used. Default is ``None``.
:param Scheduler scheduler_discriminator: Learning rate scheduler for
the ``discriminator``.
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
scheduler is used. Default is ``None``.
:param WeightingInterface weighting: The weighting schema to be used.
If `None`, no weighting schema is used. Default is ``None``.
:param torch.nn.Module loss: The loss function to be minimized.
If `None`, the :class:`torch.nn.MSELoss` loss is used.
Default is `None`.
"""
if discriminator is None:
discriminator = copy.deepcopy(model)
super().__init__(
models=[model, discriminator],
problem=problem,
optimizers=[optimizer_model, optimizer_discriminator],
schedulers=[scheduler_model, scheduler_discriminator],
weighting=weighting,
loss=loss,
)
# Set automatic optimization to False
self.automatic_optimization = False
[docs]
def forward(self, x):
"""
Forward pass.
:param LabelTensor x: Input tensor.
:return: The output of the neural network.
:rtype: LabelTensor
"""
return self.neural_net(x)
[docs]
def training_step(self, batch):
"""
Solver training step, overridden to perform manual optimization.
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
tuple containing a condition name and a dictionary of points.
:return: The aggregated loss.
:rtype: LabelTensor
"""
# train model
self.optimizer_model.instance.zero_grad()
loss = super().training_step(batch)
self.manual_backward(loss)
self.optimizer_model.instance.step()
# train discriminator
self.optimizer_discriminator.instance.zero_grad()
loss = super().training_step(batch)
self.manual_backward(-loss)
self.optimizer_discriminator.instance.step()
return loss
[docs]
def loss_phys(self, samples, equation):
"""
Computes the physics loss for the physics-informed solver based on the
provided samples and equation.
:param LabelTensor samples: The samples to evaluate the physics loss.
:param EquationInterface equation: The governing equation.
:return: The computed physics loss.
:rtype: LabelTensor
"""
# Compute discriminator bets
discriminator_bets = self.discriminator(samples)
# Compute residual and multiply discriminator_bets
residual = self.compute_residual(samples=samples, equation=equation)
residual = residual * discriminator_bets
# Compute competitive residual.
loss_val = self.loss(
torch.zeros_like(residual, requires_grad=True),
residual,
)
return loss_val
[docs]
def on_train_batch_end(self, outputs, batch, batch_idx):
"""
This method is called at the end of each training batch and overrides
the PyTorch Lightning implementation to log checkpoints.
:param torch.Tensor outputs: The ``model``'s output for the current
batch.
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
tuple containing a condition name and a dictionary of points.
:param int batch_idx: The index of the current batch.
"""
# increase by one the counter of optimization to save loggers
(
self.trainer.fit_loop.epoch_loop.manual_optimization.optim_step_progress.total.completed
) += 1
return super().on_train_batch_end(outputs, batch, batch_idx)
@property
def neural_net(self):
"""
The model.
:return: The model.
:rtype: torch.nn.Module
"""
return self.models[0]
@property
def discriminator(self):
"""
The discriminator.
:return: The discriminator.
:rtype: torch.nn.Module
"""
return self.models[1]
@property
def optimizer_model(self):
"""
The optimizer associated to the model.
:return: The optimizer for the model.
:rtype: Optimizer
"""
return self.optimizers[0]
@property
def optimizer_discriminator(self):
"""
The optimizer associated to the discriminator.
:return: The optimizer for the discriminator.
:rtype: Optimizer
"""
return self.optimizers[1]
@property
def scheduler_model(self):
"""
The scheduler associated to the model.
:return: The scheduler for the model.
:rtype: Scheduler
"""
return self.schedulers[0]
@property
def scheduler_discriminator(self):
"""
The scheduler associated to the discriminator.
:return: The scheduler for the discriminator.
:rtype: Scheduler
"""
return self.schedulers[1]