Source code for pina.problem.zoo.helmholtz

"""Formulation of the Helmholtz problem."""

import torch
from ... import Condition
from ...operator import laplacian
from ...domain import CartesianDomain
from ...problem import SpatialProblem
from ...utils import check_consistency
from ...equation import Equation, FixedValue


class HelmholtzEquation(Equation):
    """
    Implementation of the Helmholtz equation.
    """

    def __init__(self, alpha):
        """
        Initialization of the :class:`HelmholtzEquation` class.

        :param alpha: Parameter of the forcing term.
        :type alpha: float | int
        """
        self.alpha = alpha
        check_consistency(alpha, (int, float))

        def equation(input_, output_):
            """
            Implementation of the Helmholtz equation.

            :param LabelTensor input_: Input data of the problem.
            :param LabelTensor output_: Output data of the problem.
            :return: The residual of the Helmholtz equation.
            :rtype: LabelTensor
            """
            lap = laplacian(output_, input_, components=["u"], d=["x", "y"])
            q = (
                (1 - 2 * (self.alpha * torch.pi) ** 2)
                * torch.sin(self.alpha * torch.pi * input_.extract("x"))
                * torch.sin(self.alpha * torch.pi * input_.extract("y"))
            )
            return lap + output_ - q

        super().__init__(equation)


[docs] class HelmholtzProblem(SpatialProblem): r""" Implementation of the Helmholtz problem in the square domain :math:`[-1, 1] \times [-1, 1]`. .. seealso:: **Original reference**: Si, Chenhao, et al. *Complex Physics-Informed Neural Network.* arXiv preprint arXiv:2502.04917 (2025). DOI: `arXiv:2502.04917 <https://arxiv.org/abs/2502.04917>`_. :Example: >>> problem = HelmholtzProblem() """ output_variables = ["u"] spatial_domain = CartesianDomain({"x": [-1, 1], "y": [-1, 1]}) domains = { "D": CartesianDomain({"x": [-1, 1], "y": [-1, 1]}), "g1": CartesianDomain({"x": [-1, 1], "y": 1.0}), "g2": CartesianDomain({"x": [-1, 1], "y": -1.0}), "g3": CartesianDomain({"x": 1.0, "y": [-1, 1]}), "g4": CartesianDomain({"x": -1.0, "y": [-1, 1]}), } conditions = { "g1": Condition(domain="g1", equation=FixedValue(0.0)), "g2": Condition(domain="g2", equation=FixedValue(0.0)), "g3": Condition(domain="g3", equation=FixedValue(0.0)), "g4": Condition(domain="g4", equation=FixedValue(0.0)), } def __init__(self, alpha=3.0): """ Initialization of the :class:`HelmholtzProblem` class. :param alpha: Parameter of the forcing term. :type alpha: float | int """ super().__init__() self.alpha = alpha check_consistency(alpha, (int, float)) self.conditions["D"] = Condition( domain="D", equation=HelmholtzEquation(self.alpha) )
[docs] def solution(self, pts): """ Implementation of the analytical solution of the Helmholtz problem. :param LabelTensor pts: Points where the solution is evaluated. :return: The analytical solution of the Poisson problem. :rtype: LabelTensor """ sol = torch.sin(self.alpha * torch.pi * pts.extract("x")) * torch.sin( self.alpha * torch.pi * pts.extract("y") ) sol.labels = self.output_variables return sol