Source code for pina.problem.zoo.diffusion_reaction
"""Formulation of the diffusion-reaction problem."""
import torch
from ... import Condition
from ...equation import Equation, FixedValue, DiffusionReaction
from ...problem import SpatialProblem, TimeDependentProblem
from ...utils import check_consistency
from ...domain import CartesianDomain
def initial_condition(input_, output_):
"""
Definition of the initial condition of the diffusion-reaction problem.
:param LabelTensor input_: The input data of the problem.
:param LabelTensor output_: The output data of the problem.
:return: The residual of the initial condition.
:rtype: LabelTensor
"""
x = input_.extract("x")
u_0 = (
torch.sin(x)
+ (1 / 2) * torch.sin(2 * x)
+ (1 / 3) * torch.sin(3 * x)
+ (1 / 4) * torch.sin(4 * x)
+ (1 / 8) * torch.sin(8 * x)
)
return output_ - u_0
[docs]
class DiffusionReactionProblem(TimeDependentProblem, SpatialProblem):
r"""
Implementation of the diffusion-reaction problem in the spatial interval
:math:`[-\pi, \pi]` and temporal interval :math:`[0, 1]`.
.. seealso::
**Original reference**: Si, Chenhao, et al. *Complex Physics-Informed
Neural Network.* arXiv preprint arXiv:2502.04917 (2025).
DOI: `arXiv:2502.04917 <https://arxiv.org/abs/2502.04917>`_.
:Example:
>>> problem = DiffusionReactionProblem()
"""
output_variables = ["u"]
spatial_domain = CartesianDomain({"x": [-torch.pi, torch.pi]})
temporal_domain = CartesianDomain({"t": [0, 1]})
domains = {
"D": CartesianDomain({"x": [-torch.pi, torch.pi], "t": [0, 1]}),
"g1": CartesianDomain({"x": -torch.pi, "t": [0, 1]}),
"g2": CartesianDomain({"x": torch.pi, "t": [0, 1]}),
"t0": CartesianDomain({"x": [-torch.pi, torch.pi], "t": 0.0}),
}
conditions = {
"g1": Condition(domain="g1", equation=FixedValue(0.0)),
"g2": Condition(domain="g2", equation=FixedValue(0.0)),
"t0": Condition(domain="t0", equation=Equation(initial_condition)),
}
def __init__(self, alpha=1e-4):
"""
Initialization of the :class:`DiffusionReactionProblem`.
:param alpha: The diffusion coefficient.
:type alpha: float | int
"""
super().__init__()
check_consistency(alpha, (float, int))
self.alpha = alpha
def forcing_term(input_):
"""
Implementation of the forcing term.
"""
# Extract spatial and temporal variables
spatial_d = [di for di in input_.labels if di != "t"]
x = input_.extract(spatial_d)
t = input_.extract("t")
return torch.exp(-t) * (
1.5 * torch.sin(2 * x)
+ (8 / 3) * torch.sin(3 * x)
+ (15 / 4) * torch.sin(4 * x)
+ (63 / 8) * torch.sin(8 * x)
)
self.conditions["D"] = Condition(
domain="D",
equation=DiffusionReaction(self.alpha, forcing_term),
)
[docs]
def solution(self, pts):
"""
Implementation of the analytical solution of the diffusion-reaction
problem.
:param LabelTensor pts: Points where the solution is evaluated.
:return: The analytical solution of the diffusion-reaction problem.
:rtype: LabelTensor
"""
t = pts.extract("t")
x = pts.extract("x")
sol = torch.exp(-t) * (
torch.sin(x)
+ (1 / 2) * torch.sin(2 * x)
+ (1 / 3) * torch.sin(3 * x)
+ (1 / 4) * torch.sin(4 * x)
+ (1 / 8) * torch.sin(8 * x)
)
sol.labels = self.output_variables
return sol