Source code for pina.model.sindy
"""Module for the SINDy model class."""
from typing import Callable
import torch
from ..utils import check_consistency, check_positive_integer
[docs]
class SINDy(torch.nn.Module):
r"""
SINDy model class.
The Sparse Identification of Nonlinear Dynamics (SINDy) model identifies the
governing equations of a dynamical system from data by learning a sparse
linear combination of non-linear candidate functions.
The output of the model is expressed as product of a library matrix and a
coefficient matrix:
.. math::
\dot{X} = \Theta(X) \Xi
where:
- :math:`X \in \mathbb{R}^{B \times D}` is the input snapshots of the
system state. Here, :math:`B` is the batch size and :math:`D` is the
number of state variables.
- :math:`\Theta(X) \in \mathbb{R}^{B \times L}` is the library matrix
obtained by evaluating a set of candidate functions on the input data.
Here, :math:`L` is the number of candidate functions in the library.
- :math:`\Xi \in \mathbb{R}^{L \times D}` is the learned coefficient
matrix that defines the sparse model.
.. seealso::
**Original reference**:
Brunton, S.L., Proctor, J.L., and Kutz, J.N. (2016).
*Discovering governing equations from data: Sparse identification of
non-linear dynamical systems.*
Proceedings of the National Academy of Sciences, 113(15), 3932-3937.
DOI: `10.1073/pnas.1517384113
<https://doi.org/10.1073/pnas.1517384113>`_
"""
def __init__(self, library, output_dimension):
"""
Initialization of the :class:`SINDy` class.
:param list[Callable] library: The collection of candidate functions
used to construct the library matrix. Each function must accept an
input tensor of shape ``[..., D]`` and return a tensor of shape
``[..., 1]``.
:param int output_dimension: The number of output variables, typically
the number of state derivatives. It determines the number of columns
in the coefficient matrix.
:raises ValueError: If ``library`` is not a list of callables.
:raises AssertionError: If ``output_dimension`` is not a positive
integer.
"""
super().__init__()
# Check consistency
check_positive_integer(output_dimension, strict=True)
check_consistency(library, Callable)
if not isinstance(library, list):
raise ValueError("`library` must be a list of callables.")
# Initialization
self._library = library
self._coefficients = torch.nn.Parameter(
torch.zeros(len(library), output_dimension)
)
[docs]
def forward(self, x):
"""
Forward pass of the :class:`SINDy` model.
:param torch.Tensor x: The input batch of state variables.
:return: The predicted time derivatives of the state variables.
:rtype: torch.Tensor
"""
theta = torch.stack([f(x) for f in self.library], dim=-2)
return torch.einsum("...li , lo -> ...o", theta, self.coefficients)
@property
def library(self):
"""
The library of candidate functions.
:return: The library.
:rtype: list[Callable]
"""
return self._library
@property
def coefficients(self):
"""
The coefficients of the model.
:return: The coefficients.
:rtype: torch.Tensor
"""
return self._coefficients