Source code for pina.model.fourier_neural_operator

"""Module for the Fourier Neural Operator model class."""

import warnings
import torch
from torch import nn
from ..label_tensor import LabelTensor
from ..utils import check_consistency
from .block.fourier_block import FourierBlock1D, FourierBlock2D, FourierBlock3D
from .kernel_neural_operator import KernelNeuralOperator


[docs] class FourierIntegralKernel(torch.nn.Module): """ Fourier Integral Kernel model class. This class implements the Fourier Integral Kernel network, which performs global convolution in the Fourier space. .. seealso:: **Original reference**: Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020). *Fourier neural operator for parametric partial differential equations*. DOI: `arXiv preprint arXiv:2010.08895. <https://arxiv.org/abs/2010.08895>`_ """ def __init__( self, input_numb_fields, output_numb_fields, n_modes, dimensions=3, padding=8, padding_type="constant", inner_size=20, n_layers=2, func=nn.Tanh, layers=None, ): """ Initialization of the :class:`FourierIntegralKernel` class. :param int input_numb_fields: The number of input fields. :param int output_numb_fields: The number of output fields. :param n_modes: The number of modes. :type n_modes: int | list[int] :param int dimensions: The number of dimensions. It can be set to ``1``, ``2``, or ``3``. Default is ``3``. :param int padding: The padding size. Default is ``8``. :param str padding_type: The padding strategy. Default is ``constant``. :param int inner_size: The inner size. Default is ``20``. :param int n_layers: The number of layers. Default is ``2``. :param func: The activation function. If a list is passed, it must have the same length as ``n_layers``. If a single function is passed, it is used for all layers, except for the last one. Default is :class:`torch.nn.Tanh`. :type func: torch.nn.Module | list[torch.nn.Module] :param list[int] layers: The list of the dimension of inner layers. If ``None``, ``n_layers`` of dimension ``inner_size`` are used. Otherwise, it overrides the values passed to ``n_layers`` and ``inner_size``. Default is ``None``. :raises RuntimeError: If the number of layers and functions are inconsistent. :raises RunTimeError: If the number of layers and modes are inconsistent. """ super().__init__() # check type consistency self._check_consistency( dimensions, padding, padding_type, inner_size, n_layers, func, layers, n_modes, ) # assign padding self._padding = padding # initialize fourier layer for each dimension fourier_layer = self._get_fourier_block(dimensions) # Here we build the FNO kernels by stacking Fourier Blocks # 1. Assign output dimensions for each FNO layer if layers is None: layers = [inner_size] * n_layers # 2. Assign activation functions for each FNO layer if isinstance(func, list): if len(layers) != len(func): raise RuntimeError( "Inconsistent number of layers and functions." ) _functions = func else: _functions = [func for _ in range(len(layers) - 1)] _functions.append(torch.nn.Identity) # 3. Assign modes functions for each FNO layer if isinstance(n_modes, list): if all(isinstance(i, list) for i in n_modes) and len(layers) != len( n_modes ): raise RuntimeError("Inconsistent number of layers and modes.") if all(isinstance(i, int) for i in n_modes): n_modes = [n_modes] * len(layers) else: n_modes = [n_modes] * len(layers) # 4. Build the FNO network tmp_layers = [input_numb_fields] + layers + [output_numb_fields] self._layers = nn.Sequential( *[ fourier_layer( input_numb_fields=tmp_layers[i], output_numb_fields=tmp_layers[i + 1], n_modes=n_modes[i], activation=_functions[i], ) for i in range(len(layers)) ] ) # 5. Padding values for spectral conv if isinstance(padding, int): padding = [padding] * dimensions self._ipad = [-pad if pad > 0 else None for pad in padding[:dimensions]] self._padding_type = padding_type self._pad = [ val for pair in zip([0] * dimensions, padding) for val in pair ]
[docs] def forward(self, x): """ Forward pass for the :class:`FourierIntegralKernel` model. :param x: The input tensor for performing the computation. Depending on the ``dimensions`` in the initialization, it expects a tensor with the following shapes: * 1D tensors: ``[batch, X, channels]`` * 2D tensors: ``[batch, X, Y, channels]`` * 3D tensors: ``[batch, X, Y, Z, channels]`` :type x: torch.Tensor | LabelTensor :raises Warning: If a LabelTensor is passed as input. :return: The output tensor. :rtype: torch.Tensor """ if isinstance(x, LabelTensor): warnings.warn( "LabelTensor passed as input is not allowed," " casting LabelTensor to Torch.Tensor" ) x = x.as_subclass(torch.Tensor) # permuting the input [batch, channels, x, y, ...] permutation_idx = [0, x.ndim - 1, *list(range(1, x.ndim - 1))] x = x.permute(permutation_idx) # padding the input x = torch.nn.functional.pad(x, pad=self._pad, mode=self._padding_type) # apply fourier layers x = self._layers(x) # remove padding idxs = [slice(None), slice(None)] + [slice(pad) for pad in self._ipad] x = x[idxs] # permuting back [batch, x, y, ..., channels] permutation_idx = [0, *list(range(2, x.ndim)), 1] x = x.permute(permutation_idx) return x
@staticmethod def _check_consistency( dimensions, padding, padding_type, inner_size, n_layers, func, layers, n_modes, ): """ Check the consistency of the input parameters. :param int dimensions: The number of dimensions. :param int padding: The padding size. :param str padding_type: The padding strategy. :param int inner_size: The inner size. :param int n_layers: The number of layers. :param func: The activation function. :type func: torch.nn.Module | list[torch.nn.Module] :param list[int] layers: The list of the dimension of inner layers. :param n_modes: The number of modes. :type n_modes: int | list[int] :raises ValueError: If the input is not consistent. """ check_consistency(dimensions, int) check_consistency(padding, int) check_consistency(padding_type, str) check_consistency(inner_size, int) check_consistency(n_layers, int) check_consistency(func, nn.Module, subclass=True) if layers is not None: if isinstance(layers, (tuple, list)): check_consistency(layers, int) else: raise ValueError("layers must be tuple or list of int.") if not isinstance(n_modes, (list, tuple, int)): raise ValueError( "n_modes must be a int or list or tuple of valid modes." " More information on the official documentation." ) @staticmethod def _get_fourier_block(dimensions): """ Retrieve the Fourier Block class based on the number of dimensions. :param int dimensions: The number of dimensions. :raises NotImplementedError: If the number of dimensions is not 1, 2, or 3. :return: The Fourier Block class. :rtype: FourierBlock1D | FourierBlock2D | FourierBlock3D """ if dimensions == 1: return FourierBlock1D if dimensions == 2: return FourierBlock2D if dimensions == 3: return FourierBlock3D raise NotImplementedError("FNO implemented only for 1D/2D/3D data.")
[docs] class FNO(KernelNeuralOperator): """ Fourier Neural Operator model class. The Fourier Neural Operator (FNO) is a general architecture for learning operators, which map functions to functions. It can be trained both with Supervised and Physics_Informed learning strategies. The Fourier Neural Operator performs global convolution in the Fourier space. .. seealso:: **Original reference**: Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020). *Fourier neural operator for parametric partial differential equations*. DOI: `arXiv preprint arXiv:2010.08895. <https://arxiv.org/abs/2010.08895>`_ """ def __init__( self, lifting_net, projecting_net, n_modes, dimensions=3, padding=8, padding_type="constant", inner_size=20, n_layers=2, func=nn.Tanh, layers=None, ): """ :param torch.nn.Module lifting_net: The lifting neural network mapping the input to its hidden dimension. :param torch.nn.Module projecting_net: The projection neural network mapping the hidden representation to the output function. :param n_modes: The number of modes. :type n_modes: int | list[int] :param int dimensions: The number of dimensions. It can be set to ``1``, ``2``, or ``3``. Default is ``3``. :param int padding: The padding size. Default is ``8``. :param str padding_type: The padding strategy. Default is ``constant``. :param int inner_size: The inner size. Default is ``20``. :param int n_layers: The number of layers. Default is ``2``. :param func: The activation function. If a list is passed, it must have the same length as ``n_layers``. If a single function is passed, it is used for all layers, except for the last one. Default is :class:`torch.nn.Tanh`. :type func: torch.nn.Module | list[torch.nn.Module] :param list[int] layers: The list of the dimension of inner layers. If ``None``, ``n_layers`` of dimension ``inner_size`` are used. Otherwise, it overrides the values passed to ``n_layers`` and ``inner_size``. Default is ``None``. """ lifting_operator_out = lifting_net( torch.rand(size=next(lifting_net.parameters()).size()) ).shape[-1] super().__init__( lifting_operator=lifting_net, projection_operator=projecting_net, integral_kernels=FourierIntegralKernel( input_numb_fields=lifting_operator_out, output_numb_fields=next(projecting_net.parameters()).size(), n_modes=n_modes, dimensions=dimensions, padding=padding, padding_type=padding_type, inner_size=inner_size, n_layers=n_layers, func=func, layers=layers, ), )
[docs] def forward(self, x): """ Forward pass for the :class:`FourierNeuralOperator` model. The ``lifting_net`` maps the input to the hidden dimension. Then, several layers of Fourier blocks are applied. Finally, the ``projection_net`` maps the hidden representation to the output function. :param x: The input tensor for performing the computation. Depending on the ``dimensions`` in the initialization, it expects a tensor with the following shapes: * 1D tensors: ``[batch, X, channels]`` * 2D tensors: ``[batch, X, Y, channels]`` * 3D tensors: ``[batch, X, Y, Z, channels]`` :type x: torch.Tensor | LabelTensor :return: The output tensor. :rtype: torch.Tensor """ if isinstance(x, LabelTensor): x = x.as_subclass(torch.Tensor) return super().forward(x)