"""Module for FeedForward model"""
import torch
import torch.nn as nn
from ..utils import check_consistency
from .layers.residual import EnhancedLinear
[docs]
class FeedForward(torch.nn.Module):
"""
The PINA implementation of feedforward network, also refered as multilayer
perceptron.
:param int input_dimensions: The number of input components of the model.
Expected tensor shape of the form :math:`(*, d)`, where *
means any number of dimensions including none, and :math:`d` the ``input_dimensions``.
:param int output_dimensions: The number of output components of the model.
Expected tensor shape of the form :math:`(*, d)`, where *
means any number of dimensions including none, and :math:`d` the ``output_dimensions``.
:param int inner_size: number of neurons in the hidden layer(s). Default is
20.
:param int n_layers: number of hidden layers. Default is 2.
:param torch.nn.Module func: the activation function to use. If a single
:class:`torch.nn.Module` is passed, this is used as activation function
after any layers, except the last one. If a list of Modules is passed,
they are used as activation functions at any layers, in order.
:param list(int) | tuple(int) layers: a list containing the number of neurons for
any hidden layers. If specified, the parameters ``n_layers`` e
``inner_size`` are not considered.
:param bool bias: If ``True`` the MLP will consider some bias.
"""
def __init__(
self,
input_dimensions,
output_dimensions,
inner_size=20,
n_layers=2,
func=nn.Tanh,
layers=None,
bias=True,
):
""" """
super().__init__()
if not isinstance(input_dimensions, int):
raise ValueError("input_dimensions expected to be int.")
self.input_dimension = input_dimensions
if not isinstance(output_dimensions, int):
raise ValueError("output_dimensions expected to be int.")
self.output_dimension = output_dimensions
if layers is None:
layers = [inner_size] * n_layers
tmp_layers = layers.copy()
tmp_layers.insert(0, self.input_dimension)
tmp_layers.append(self.output_dimension)
self.layers = []
for i in range(len(tmp_layers) - 1):
self.layers.append(
nn.Linear(tmp_layers[i], tmp_layers[i + 1], bias=bias)
)
if isinstance(func, list):
self.functions = func
else:
self.functions = [func for _ in range(len(self.layers) - 1)]
if len(self.layers) != len(self.functions) + 1:
raise RuntimeError("uncosistent number of layers and functions")
unique_list = []
for layer, func in zip(self.layers[:-1], self.functions):
unique_list.append(layer)
if func is not None:
unique_list.append(func())
unique_list.append(self.layers[-1])
self.model = nn.Sequential(*unique_list)
[docs]
def forward(self, x):
"""
Defines the computation performed at every call.
:param x: The tensor to apply the forward pass.
:type x: torch.Tensor
:return: the output computed by the model.
:rtype: torch.Tensor
"""
return self.model(x)
[docs]
class ResidualFeedForward(torch.nn.Module):
"""
The PINA implementation of feedforward network, also with skipped connection
and transformer network, as presented in **Understanding and mitigating gradient
pathologies in physics-informed neural networks**
.. seealso::
**Original reference**: Wang, Sifan, Yujun Teng, and Paris Perdikaris.
*Understanding and mitigating gradient flow pathologies in physics-informed
neural networks*. SIAM Journal on Scientific Computing 43.5 (2021): A3055-A3081.
DOI: `10.1137/20M1318043
<https://epubs.siam.org/doi/abs/10.1137/20M1318043>`_
:param int input_dimensions: The number of input components of the model.
Expected tensor shape of the form :math:`(*, d)`, where *
means any number of dimensions including none, and :math:`d` the ``input_dimensions``.
:param int output_dimensions: The number of output components of the model.
Expected tensor shape of the form :math:`(*, d)`, where *
means any number of dimensions including none, and :math:`d` the ``output_dimensions``.
:param int inner_size: number of neurons in the hidden layer(s). Default is
20.
:param int n_layers: number of hidden layers. Default is 2.
:param torch.nn.Module func: the activation function to use. If a single
:class:`torch.nn.Module` is passed, this is used as activation function
after any layers, except the last one. If a list of Modules is passed,
they are used as activation functions at any layers, in order.
:param bool bias: If ``True`` the MLP will consider some bias.
:param list | tuple transformer_nets: a list or tuple containing the two
torch.nn.Module which act as transformer network. The input dimension
of the network must be the same as ``input_dimensions``, and the output
dimension must be the same as ``inner_size``.
"""
def __init__(
self,
input_dimensions,
output_dimensions,
inner_size=20,
n_layers=2,
func=nn.Tanh,
bias=True,
transformer_nets=None,
):
""" """
super().__init__()
# check type consistency
check_consistency(input_dimensions, int)
check_consistency(output_dimensions, int)
check_consistency(inner_size, int)
check_consistency(n_layers, int)
check_consistency(func, torch.nn.Module, subclass=True)
check_consistency(bias, bool)
# check transformer nets
if transformer_nets is None:
transformer_nets = [
EnhancedLinear(
nn.Linear(
in_features=input_dimensions, out_features=inner_size
),
nn.Tanh(),
),
EnhancedLinear(
nn.Linear(
in_features=input_dimensions, out_features=inner_size
),
nn.Tanh(),
),
]
elif isinstance(transformer_nets, (list, tuple)):
if len(transformer_nets) != 2:
raise ValueError(
"transformer_nets needs to be a list of len two."
)
for net in transformer_nets:
if not isinstance(net, nn.Module):
raise ValueError(
"transformer_nets needs to be a list of torch.nn.Module."
)
x = torch.rand(10, input_dimensions)
try:
out = net(x)
except RuntimeError:
raise ValueError(
"transformer network input incompatible with input_dimensions."
)
if out.shape[-1] != inner_size:
raise ValueError(
"transformer network output incompatible with inner_size."
)
else:
RuntimeError(
"Runtime error for transformer nets, check official documentation."
)
# assign variables
self.input_dimension = input_dimensions
self.output_dimension = output_dimensions
self.transformer_nets = nn.ModuleList(transformer_nets)
# build layers
layers = [inner_size] * n_layers
tmp_layers = layers.copy()
tmp_layers.insert(0, self.input_dimension)
self.layers = []
for i in range(len(tmp_layers) - 1):
self.layers.append(
nn.Linear(tmp_layers[i], tmp_layers[i + 1], bias=bias)
)
self.last_layer = nn.Linear(
tmp_layers[len(tmp_layers) - 1], output_dimensions, bias=bias
)
if isinstance(func, list):
self.functions = func()
else:
self.functions = [func() for _ in range(len(self.layers))]
if len(self.layers) != len(self.functions):
raise RuntimeError("uncosistent number of layers and functions")
unique_list = []
for layer, func in zip(self.layers, self.functions):
unique_list.append(EnhancedLinear(layer=layer, activation=func))
self.inner_layers = torch.nn.Sequential(*unique_list)
[docs]
def forward(self, x):
"""
Defines the computation performed at every call.
:param x: The tensor to apply the forward pass.
:type x: torch.Tensor
:return: the output computed by the model.
:rtype: torch.Tensor
"""
# enhance the input with transformer
input_ = []
for nets in self.transformer_nets:
input_.append(nets(x))
# skip connections pass
for layer in self.inner_layers.children():
x = layer(x)
x = (1.0 - x) * input_[0] + x * input_[1]
# last layer
return self.last_layer(x)