Source code for pina.model.block.pod_block
"""Module for Base Continuous Convolution class."""
import torch
import warnings
[docs]
class PODBlock(torch.nn.Module):
"""
Proper Orthogonal Decomposition block.
This block projects the input field on the proper orthogonal decomposition
basis. Before being used, it must be fitted to the data with the ``fit``
method, which invokes the singular value decomposition. This block is not
trainable.
.. note::
All the POD modes are stored in memory, avoiding to recompute them when
the rank changes, leading to increased memory usage.
"""
def __init__(self, rank, scale_coefficients=True):
"""
Initialization of the :class:`PODBlock` class.
:param int rank: The rank of the POD layer.
:param bool scale_coefficients: If ``True``, the coefficients are scaled
after the projection to have zero mean and unit variance.
Default is ``True``.
"""
super().__init__()
self.__scale_coefficients = scale_coefficients
self._basis = None
self._scaler = None
self._rank = rank
@property
def rank(self):
"""
The rank of the POD layer.
:return: The rank of the POD layer.
:rtype: int
"""
return self._rank
@rank.setter
def rank(self, value):
"""
Set the rank of the POD layer.
:param int value: The new rank of the POD layer.
:raises ValueError: If the rank is not a positive integer.
"""
if value < 1 or not isinstance(value, int):
raise ValueError("The rank must be positive integer")
self._rank = value
@property
def basis(self):
"""
The POD basis. It is a matrix whose columns are the first ``rank`` POD
modes.
:return: The POD basis.
:rtype: torch.Tensor
"""
if self._basis is None:
return None
return self._basis[: self.rank]
@property
def scaler(self):
"""
Return the scaler dictionary, having keys ``mean`` and ``std``
corresponding to the mean and the standard deviation of the
coefficients, respectively.
:return: The scaler dictionary.
:rtype: dict
"""
if self._scaler is None:
return None
return {
"mean": self._scaler["mean"][: self.rank],
"std": self._scaler["std"][: self.rank],
}
@property
def scale_coefficients(self):
"""
The flag indicating if the coefficients are scaled after the projection.
:return: The flag indicating if the coefficients are scaled.
:rtype: bool
"""
return self.__scale_coefficients
[docs]
def fit(self, X, randomized=True):
"""
Set the POD basis by performing the singular value decomposition of the
given tensor. If ``self.scale_coefficients`` is True, the coefficients
are scaled after the projection to have zero mean and unit variance.
:param torch.Tensor X: The input tensor to be reduced.
"""
self._fit_pod(X, randomized)
if self.__scale_coefficients:
self._fit_scaler(torch.matmul(self._basis, X.T))
def _fit_scaler(self, coeffs):
"""
Compute the mean and the standard deviation of the given coefficients,
which are then stored in ``self._scaler``.
:param torch.Tensor coeffs: The coefficients to be scaled.
"""
self._scaler = {
"std": torch.std(coeffs, dim=1),
"mean": torch.mean(coeffs, dim=1),
}
def _fit_pod(self, X, randomized):
"""
Compute the POD basis of the given tensor, which is then stored in
``self._basis``.
:param torch.Tensor X: The tensor to be reduced.
"""
if X.device.type == "mps": # svd_lowrank not arailable for mps
warnings.warn(
"svd_lowrank not available for mps, using svd instead."
"This may slow down computations.",
ResourceWarning,
)
self._basis = torch.svd(X.T)[0].T
else:
if randomized:
warnings.warn(
"Considering a randomized algorithm to compute the POD basis"
)
self._basis = torch.svd_lowrank(X.T, q=X.shape[0])[0].T
else:
self._basis = torch.svd(X.T)[0].T
[docs]
def forward(self, X):
"""
The forward pass of the POD layer.
:param torch.Tensor X: The input tensor to be reduced.
:return: The reduced tensor.
:rtype: torch.Tensor
"""
return self.reduce(X)
[docs]
def reduce(self, X):
"""
Reduce the input tensor to its POD representation. The POD layer must
be fitted before being used.
:param torch.Tensor X: The input tensor to be reduced.
:raises RuntimeError: If the POD layer is not fitted.
:return: The reduced tensor.
:rtype: torch.Tensor
"""
if self._basis is None:
raise RuntimeError(
"The POD layer needs to be fitted before being used."
)
coeff = torch.matmul(self.basis, X.T)
if coeff.ndim == 1:
coeff = coeff.unsqueeze(1)
coeff = coeff.T
if self.__scale_coefficients:
coeff = (coeff - self.scaler["mean"]) / self.scaler["std"]
return coeff
[docs]
def expand(self, coeff):
"""
Expand the given coefficients to the original space. The POD layer needs
to be fitted before being used.
:param torch.Tensor coeff: The coefficients to be expanded.
:raises RuntimeError: If the POD layer is not fitted.
:return: The expanded tensor.
:rtype: torch.Tensor
"""
if self._basis is None:
raise RuntimeError(
"The POD layer needs to be trained before being used."
)
if self.__scale_coefficients:
coeff = coeff * self.scaler["std"] + self.scaler["mean"]
predicted = torch.matmul(self.basis.T, coeff.T).T
if predicted.ndim == 1:
predicted = predicted.unsqueeze(0)
return predicted