Source code for pina.model.block.convolution

"""Module for the Base Continuous Convolution class."""

from abc import ABCMeta, abstractmethod
import torch
from .stride import Stride
from .utils_convolution import optimizing


[docs] class BaseContinuousConv(torch.nn.Module, metaclass=ABCMeta): r""" Base Class for Continuous Convolution. The class expects the input to be in the form: :math:`[B \times N_{in} \times N \times D]`, where :math:`B` is the batch_size, :math:`N_{in}` is the number of input fields, :math:`N` the number of points in the mesh, :math:`D` the dimension of the problem. In particular: * :math:`D` is the number of spatial variables + 1. The last column must contain the field value. * :math:`N_{in}` represents the number of function components. For instance, a vectorial function :math:`f = [f_1, f_2]` has :math:`N_{in}=2`. :Note A 2-dimensional vector-valued function defined on a 3-dimensional input evaluated on a 100 points input mesh and batch size of 8 is represented as a tensor of shape ``[8, 2, 100, 4]``, where the columns ``[:, 0, :, -1]`` and ``[:, 1, :, -1]`` represent the first and second, components of the function, respectively. The algorithm returns a tensor of shape: :math:`[B \times N_{out} \times N \times D]`, where :math:`B` is the batch_size, :math:`N_{out}` is the number of output fields, :math:`N` the number of points in the mesh, :math:`D` the dimension of the problem. """ def __init__( self, input_numb_field, output_numb_field, filter_dim, stride, model=None, optimize=False, no_overlap=False, ): """ Initialization of the :class:`BaseContinuousConv` class. :param int input_numb_field: The number of input fields. :param int output_numb_field: The number of input fields. :param filter_dim: The shape of the filter. :type filter_dim: list[int] | tuple[int] :param dict stride: The stride of the filter. :param torch.nn.Module model: The neural network for inner parametrization. Default is ``None``. :param bool optimize: If ``True``, optimization is performed on the continuous filter. It should be used only when the training points are fixed. If ``model`` is in ``eval`` mode, it is reset to ``False``. Default is ``False``. :param bool no_overlap: If ``True``, optimization is performed on the transposed continuous filter. It should be used only when the filter positions do not overlap for different strides. Default is ``False``. :raises ValueError: If ``input_numb_field`` is not an integer. :raises ValueError: If ``output_numb_field`` is not an integer. :raises ValueError: If ``filter_dim`` is not a list or tuple. :raises ValueError: If ``stride`` is not a dictionary. :raises ValueError: If ``optimize`` is not a boolean. :raises ValueError: If ``no_overlap`` is not a boolean. :raises NotImplementedError: If ``no_overlap`` is ``True``. """ super().__init__() if not isinstance(input_numb_field, int): raise ValueError("input_numb_field must be int.") self._input_numb_field = input_numb_field if not isinstance(output_numb_field, int): raise ValueError("input_numb_field must be int.") self._output_numb_field = output_numb_field if not isinstance(filter_dim, (tuple, list)): raise ValueError("filter_dim must be tuple or list.") vect = filter_dim vect = torch.tensor(vect) self.register_buffer("_dim", vect, persistent=False) if not isinstance(stride, dict): raise ValueError("stride must be dictionary.") self._stride = Stride(stride) self._net = model if not isinstance(optimize, bool): raise ValueError("optimize must be bool.") self._optimize = optimize # choosing how to initialize based on optimization if self._optimize: # optimizing decorator ensure the function is called # just once self._choose_initialization = optimizing( self._initialize_convolution ) else: self._choose_initialization = self._initialize_convolution if not isinstance(no_overlap, bool): raise ValueError("no_overlap must be bool.") if no_overlap: raise NotImplementedError self.transpose = self.transpose_overlap
[docs] class DefaultKernel(torch.nn.Module): """ The default kernel. """ def __init__(self, input_dim, output_dim): """ Initialization of the :class:`DefaultKernel` class. :param int input_dim: The input dimension. :param int output_dim: The output dimension. :raises ValueError: If ``input_dim`` is not an integer. :raises ValueError: If ``output_dim`` is not an integer. """ super().__init__() assert isinstance(input_dim, int) assert isinstance(output_dim, int) self._model = torch.nn.Sequential( torch.nn.Linear(input_dim, 20), torch.nn.ReLU(), torch.nn.Linear(20, 20), torch.nn.ReLU(), torch.nn.Linear(20, output_dim), )
[docs] def forward(self, x): """ Forward pass. :param torch.Tensor x: The input data. :return: The output data. :rtype: torch.Tensor """ return self._model(x)
@property def net(self): """ The neural network for inner parametrization. :return: The neural network. :rtype: torch.nn.Module """ return self._net @property def stride(self): """ The stride of the filter. :return: The stride of the filter. :rtype: dict """ return self._stride @property def filter_dim(self): """ The shape of the filter. :return: The shape of the filter. :rtype: torch.Tensor """ return self._dim @property def input_numb_field(self): """ The number of input fields. :return: The number of input fields. :rtype: int """ return self._input_numb_field @property def output_numb_field(self): """ The number of output fields. :return: The number of output fields. :rtype: int """ return self._output_numb_field
[docs] @abstractmethod def forward(self, X): """ Forward pass. :param torch.Tensor X: The input data. """
[docs] @abstractmethod def transpose_overlap(self, X): """ Transpose the convolution with overlap. :param torch.Tensor X: The input data. """
[docs] @abstractmethod def transpose_no_overlap(self, X): """ Transpose the convolution without overlap. :param torch.Tensor X: The input data. """
@abstractmethod def _initialize_convolution(self, X, type_): """ Initialize the convolution. :param torch.Tensor X: The input data. :param str type_: The type of initialization. """