Source code for pina.model.block.average_neural_operator_block

"""Module for the Averaging Neural Operator Block class."""

import torch
from torch import nn
from ...utils import check_consistency


[docs] class AVNOBlock(nn.Module): r""" The inner block of the Averaging Neural Operator. The operator layer performs an affine transformation where the convolution is approximated with a local average. Given the input function :math:`v(x)\in\mathbb{R}^{\rm{emb}}` the layer computes the operator update :math:`K(v)` as: .. math:: K(v) = \sigma\left(Wv(x) + b + \frac{1}{|\mathcal{A}|}\int v(y)dy\right) where: * :math:`\mathbb{R}^{\rm{emb}}` is the embedding (hidden) size corresponding to the ``hidden_size`` object * :math:`\sigma` is a non-linear activation, corresponding to the ``func`` object * :math:`W\in\mathbb{R}^{\rm{emb}\times\rm{emb}}` is a tunable matrix. * :math:`b\in\mathbb{R}^{\rm{emb}}` is a tunable bias. .. seealso:: **Original reference**: Lanthaler S., Li, Z., Stuart, A. (2020). *The Nonlocal Neural Operator: Universal Approximation*. DOI: `arXiv preprint arXiv:2304.13221. <https://arxiv.org/abs/2304.13221>`_ """ def __init__(self, hidden_size=100, func=nn.GELU): """ Initialization of the :class:`AVNOBlock` class. :param int hidden_size: The size of the hidden layer. Defaults is ``100``. :param func: The activation function. Default is :class:`torch.nn.GELU`. """ super().__init__() # Check type consistency check_consistency(hidden_size, int) check_consistency(func, nn.Module, subclass=True) # Assignment self._nn = nn.Linear(hidden_size, hidden_size) self._func = func()
[docs] def forward(self, x): r""" Forward pass of the block. It performs a sum of local average and an affine transformation of the field. :param torch.Tensor x: The input tensor for performing the computation. :return: The output tensor. :rtype: torch.Tensor """ return self._func(self._nn(x) + torch.mean(x, dim=1, keepdim=True))