Source code for pina.loss.power_loss

"""Module for the PowerLoss class."""

import torch

from ..utils import check_consistency
from .loss_interface import LossInterface


[docs] class PowerLoss(LossInterface): r""" Implementation of the Power Loss. It defines a criterion to measures the pointwise error between values in the input :math:`x` and values in the target :math:`y`. If ``reduction`` is set to ``none``, the loss can be written as: .. math:: \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad l_n = \frac{1}{D}\left[\sum_{i=1}^{D} \left| x_n^i - y_n^i \right|^p\right], If ``relative`` is set to ``True``, the relative error is computed: .. math:: \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad l_n = \frac{ \sum_{i=1}^{D} | x_n^i - y_n^i|^p } {\sum_{i=1}^{D}|y_n^i|^p}, where :math:`N` is the batch size. If ``reduction`` is not ``none``, then: .. math:: \ell(x, y) = \begin{cases} \operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\ \operatorname{sum}(L), & \text{if reduction} = \text{`sum'.} \end{cases} """ def __init__(self, p=2, reduction="mean", relative=False): """ Initialization of the :class:`PowerLoss` class. :param int p: Degree of the Lp norm. It specifies the norm to be computed. Default is ``2`` (euclidean norm). :param str reduction: The reduction method for the loss. Available options: ``none``, ``mean``, ``sum``. If ``none``, no reduction is applied. If ``mean``, the sum of the loss values is divided by the number of values. If ``sum``, the loss values are summed. Default is ``mean``. :param bool relative: If ``True``, the relative error is computed. Default is ``False``. """ super().__init__(reduction=reduction) # check consistency check_consistency(p, (str, int, float)) check_consistency(relative, bool) self.p = p self.relative = relative
[docs] def forward(self, input, target): """ Forward method of the loss function. :param torch.Tensor input: Input tensor from real data. :param torch.Tensor target: Model tensor output. :return: Loss evaluation. :rtype: torch.Tensor """ loss = torch.abs((input - target)).pow(self.p).mean(-1) if self.relative: loss = loss / torch.abs(input).pow(self.p).mean(-1) return self._reduction(loss)