Source code for pina.loss.ntk_weighting
"""Module for Neural Tangent Kernel Class"""
import torch
from torch.nn import Module
from .weighting_interface import WeightingInterface
from ..utils import check_consistency
[docs]
class NeuralTangentKernelWeighting(WeightingInterface):
"""
A neural tangent kernel scheme for weighting different losses to
boost the convergence.
.. seealso::
**Original reference**: Wang, Sifan, Xinling Yu, and
Paris Perdikaris. *When and why PINNs fail to train:
A neural tangent kernel perspective*. Journal of
Computational Physics 449 (2022): 110768.
DOI: `10.1016 <https://doi.org/10.1016/j.jcp.2021.110768>`_.
"""
def __init__(self, model, alpha=0.5):
"""
Initialization of the :class:`NeuralTangentKernelWeighting` class.
:param torch.nn.Module model: The neural network model.
:param float alpha: The alpha parameter.
:raises ValueError: If ``alpha`` is not between 0 and 1 (inclusive).
"""
super().__init__()
check_consistency(alpha, float)
check_consistency(model, Module)
if alpha < 0 or alpha > 1:
raise ValueError("alpha should be a value between 0 and 1")
self.alpha = alpha
self.model = model
self.weights = {}
self.default_value_weights = 1
[docs]
def aggregate(self, losses):
"""
Weight the losses according to the Neural Tangent Kernel
algorithm.
:param dict(torch.Tensor) input: The dictionary of losses.
:return: The losses aggregation. It should be a scalar Tensor.
:rtype: torch.Tensor
"""
losses_norm = {}
for condition in losses:
losses[condition].backward(retain_graph=True)
grads = []
for param in self.model.parameters():
grads.append(param.grad.view(-1))
grads = torch.cat(grads)
losses_norm[condition] = torch.norm(grads)
self.weights = {
condition: self.alpha
* self.weights.get(condition, self.default_value_weights)
+ (1 - self.alpha)
* losses_norm[condition]
/ sum(losses_norm.values())
for condition in losses
}
return sum(
self.weights[condition] * loss for condition, loss in losses.items()
)