Source code for pina.loss.lp_loss
"""Module for the LpLoss class."""
import torch
from ..utils import check_consistency
from .loss_interface import LossInterface
[docs]
class LpLoss(LossInterface):
r"""
Implementation of the Lp Loss. It defines a criterion to measures the
pointwise Lp error between values in the input :math:`x` and values in the
target :math:`y`.
If ``reduction`` is set to ``none``, the loss can be written as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \left[\sum_{i=1}^{D} \left| x_n^i - y_n^i \right|^p \right],
If ``relative`` is set to ``True``, the relative Lp error is computed:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = \frac{ [\sum_{i=1}^{D} | x_n^i - y_n^i|^p] }
{[\sum_{i=1}^{D}|y_n^i|^p]},
where :math:`N` is the batch size.
If ``reduction`` is not ``none``, then:
.. math::
\ell(x, y) =
\begin{cases}
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
\end{cases}
"""
def __init__(self, p=2, reduction="mean", relative=False):
"""
Initialization of the :class:`LpLoss` class.
:param int p: Degree of the Lp norm. It specifies the norm to be
computed. Default is ``2`` (euclidean norm).
:param str reduction: The reduction method for the loss.
Available options: ``none``, ``mean``, ``sum``.
If ``none``, no reduction is applied. If ``mean``, the sum of the
loss values is divided by the number of values. If ``sum``, the loss
values are summed. Default is ``mean``.
:param bool relative: If ``True``, the relative error is computed.
Default is ``False``.
"""
super().__init__(reduction=reduction)
# check consistency
check_consistency(p, (str, int, float))
check_consistency(relative, bool)
self.p = p
self.relative = relative
[docs]
def forward(self, input, target):
"""
Forward method of the loss function.
:param torch.Tensor input: Input tensor from real data.
:param torch.Tensor target: Model tensor output.
:return: Loss evaluation.
:rtype: torch.Tensor
"""
loss = torch.linalg.norm((input - target), ord=self.p, dim=-1)
if self.relative:
loss = loss / torch.linalg.norm(input, ord=self.p, dim=-1)
return self._reduction(loss)