Source code for pina.domain.union_domain

"""Module for the Union Operation."""

import random
import torch
from .operation_interface import OperationInterface
from ..label_tensor import LabelTensor


[docs] class Union(OperationInterface): r""" Implementation of the union operation between of a list of domains. Given two sets :math:`A` and :math:`B`, define the union of the two sets as: .. math:: A \cup B = \{x \mid x \in A \lor x \in B\}, where :math:`x` is a point in :math:`\mathbb{R}^N`. """ def __init__(self, geometries): """ Initialization of the :class:`Union` class. :param list[DomainInterface] geometries: A list of instances of the :class:`~pina.domain.domain_interface.DomainInterface` class on which the union operation is performed. :Example: >>> # Create two ellipsoid domains >>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]}) >>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]}) >>> # Define the union of the domains >>> union = Union([ellipsoid1, ellipsoid2]) """ super().__init__(geometries) @property def sample_modes(self): """ List of available sampling modes. """ self.sample_modes = list( set(geom.sample_modes for geom in self.geometries) )
[docs] def is_inside(self, point, check_border=False): """ Check if a point is inside the resulting domain. :param LabelTensor point: Point to be checked. :param bool check_border: If ``True``, the border is considered inside the domain. Default is ``False``. :return: ``True`` if the point is inside the domain, ``False`` otherwise. :rtype: bool """ for geometry in self.geometries: if geometry.is_inside(point, check_border): return True return False
[docs] def sample(self, n, mode="random", variables="all"): """ Sampling routine. :param int n: Number of points to sample. :param str mode: Sampling method. Default is ``random``. Available modes: random sampling, ``random``; :param list[str] variables: variables to be sampled. Default is ``all``. :return: Sampled points. :rtype: LabelTensor :Example: >>> # Create two cartesian domains >>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]}) >>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]}) >>> # Define the union of the domains >>> union = Union([cartesian1, cartesian2]) >>> # Sample >>> union.sample(n=5) LabelTensor([[1.2128, 2.1991], [1.3530, 2.4317], [2.2562, 1.6605], [0.8451, 1.9878], [1.8623, 0.7102]]) >>> len(union.sample(n=5) 5 """ sampled_points = [] # calculate the number of points to sample for each geometry and the # remainder remainder = n % len(self.geometries) num_points = n // len(self.geometries) # sample the points # NB. geometries as shuffled since if we sample # multiple times just one point, we would end # up sampling only from the first geometry. iter_ = random.sample(self.geometries, len(self.geometries)) for i, geometry in enumerate(iter_): # int(i < remainder) is one only if we have a remainder # different than zero. Notice that len(geometries) is # always smaller than remaider. sampled_points.append( geometry.sample( num_points + int(i < remainder), mode, variables ) ) # in case number of sampled points is smaller than the number of # geometries if len(sampled_points) >= n: break return LabelTensor(torch.cat(sampled_points), labels=self.variables)