Source code for pina.domain.union_domain
"""Module for the Union Operation."""
import random
import torch
from .operation_interface import OperationInterface
from ..label_tensor import LabelTensor
[docs]
class Union(OperationInterface):
r"""
Implementation of the union operation between of a list of domains.
Given two sets :math:`A` and :math:`B`, define the union of the two sets as:
.. math::
A \cup B = \{x \mid x \in A \lor x \in B\},
where :math:`x` is a point in :math:`\mathbb{R}^N`.
"""
def __init__(self, geometries):
"""
Initialization of the :class:`Union` class.
:param list[DomainInterface] geometries: A list of instances of the
:class:`~pina.domain.domain_interface.DomainInterface` class on
which the union operation is performed.
:Example:
>>> # Create two ellipsoid domains
>>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]})
>>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]})
>>> # Define the union of the domains
>>> union = Union([ellipsoid1, ellipsoid2])
"""
super().__init__(geometries)
@property
def sample_modes(self):
"""
List of available sampling modes.
"""
self.sample_modes = list(
set(geom.sample_modes for geom in self.geometries)
)
[docs]
def is_inside(self, point, check_border=False):
"""
Check if a point is inside the resulting domain.
:param LabelTensor point: Point to be checked.
:param bool check_border: If ``True``, the border is considered inside
the domain. Default is ``False``.
:return: ``True`` if the point is inside the domain,
``False`` otherwise.
:rtype: bool
"""
for geometry in self.geometries:
if geometry.is_inside(point, check_border):
return True
return False
[docs]
def sample(self, n, mode="random", variables="all"):
"""
Sampling routine.
:param int n: Number of points to sample.
:param str mode: Sampling method. Default is ``random``.
Available modes: random sampling, ``random``;
:param list[str] variables: variables to be sampled. Default is ``all``.
:return: Sampled points.
:rtype: LabelTensor
:Example:
>>> # Create two cartesian domains
>>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]})
>>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]})
>>> # Define the union of the domains
>>> union = Union([cartesian1, cartesian2])
>>> # Sample
>>> union.sample(n=5)
LabelTensor([[1.2128, 2.1991],
[1.3530, 2.4317],
[2.2562, 1.6605],
[0.8451, 1.9878],
[1.8623, 0.7102]])
>>> len(union.sample(n=5)
5
"""
sampled_points = []
# calculate the number of points to sample for each geometry and the
# remainder
remainder = n % len(self.geometries)
num_points = n // len(self.geometries)
# sample the points
# NB. geometries as shuffled since if we sample
# multiple times just one point, we would end
# up sampling only from the first geometry.
iter_ = random.sample(self.geometries, len(self.geometries))
for i, geometry in enumerate(iter_):
# int(i < remainder) is one only if we have a remainder
# different than zero. Notice that len(geometries) is
# always smaller than remaider.
sampled_points.append(
geometry.sample(
num_points + int(i < remainder), mode, variables
)
)
# in case number of sampled points is smaller than the number of
# geometries
if len(sampled_points) >= n:
break
return LabelTensor(torch.cat(sampled_points), labels=self.variables)