Source code for pina.domain.simplex

"""Module for the Simplex Domain."""

import torch
from .domain_interface import DomainInterface
from .cartesian import CartesianDomain
from ..label_tensor import LabelTensor
from ..utils import check_consistency


[docs] class SimplexDomain(DomainInterface): """ Implementation of the simplex domain. """ def __init__(self, simplex_matrix, sample_surface=False): """ Initialization of the :class:`SimplexDomain` class. :param list[LabelTensor] simplex_matrix: A matrix representing the vertices of the simplex. :param bool sample_surface: A flag to choose the sampling strategy. If ``True``, samples are taken only from the surface of the simplex. If ``False``, samples are taken from the interior of the simplex. Default is ``False``. :raises ValueError: If the labels of the vertices don't match. :raises ValueError: If the number of vertices is not equal to the dimension of the simplex plus one. .. warning:: Sampling for dimensions greater or equal to 10 could result in a shrinkage of the simplex, which degrades the quality of the samples. For dimensions higher than 10, use other sampling algorithms. :Example: >>> spatial_domain = SimplexDomain( [ LabelTensor(torch.tensor([[0, 0]]), labels=["x", "y"]), LabelTensor(torch.tensor([[1, 1]]), labels=["x", "y"]), LabelTensor(torch.tensor([[0, 2]]), labels=["x", "y"]), ], sample_surface = True ) """ # check consistency of sample_surface as bool check_consistency(sample_surface, bool) self._sample_surface = sample_surface # check consistency of simplex_matrix as list or tuple check_consistency([simplex_matrix], (list, tuple)) # check everything within simplex_matrix is a LabelTensor check_consistency(simplex_matrix, LabelTensor) # check consistency of labels matrix_labels = simplex_matrix[0].labels if not all(vertex.labels == matrix_labels for vertex in simplex_matrix): raise ValueError("Labels don't match.") # check consistency dimensions dim_simplex = len(matrix_labels) if len(simplex_matrix) != dim_simplex + 1: raise ValueError( "An n-dimensional simplex is composed by n + 1 tensors of " "dimension n." ) # creating vertices matrix self._vertices_matrix = LabelTensor.vstack(simplex_matrix) # creating basis vectors for simplex vert = self._vertices_matrix self._vectors_shifted = (vert[:-1] - vert[-1]).T # build cartesian_bound self._cartesian_bound = self._build_cartesian(self._vertices_matrix) @property def sample_modes(self): """ List of available sampling modes. :return: List of available sampling modes. :rtype: list[str] """ return ["random"] @property def variables(self): """ List of variables of the domain. :return: List of variables of the domain. :rtype: list[str] """ return sorted(self._vertices_matrix.labels) def _build_cartesian(self, vertices): """ Build the cartesian border for a simplex domain to be used in sampling. :param list[LabelTensor] vertices: list of vertices defining the domain. :return: The cartesian border for the simplex domain. :rtype: CartesianDomain """ span_dict = {} for coord in self.variables: sorted_vertices = torch.sort(vertices[coord].tensor.squeeze()) # respective coord bounded by the lowest and highest values span_dict[coord] = [ float(sorted_vertices.values[0]), float(sorted_vertices.values[-1]), ] return CartesianDomain(span_dict)
[docs] def is_inside(self, point, check_border=False): """ Check if a point is inside the simplex. It uses an algorithm involving barycentric coordinates. :param LabelTensor point: Point to be checked. :param check_border: If ``True``, the border is considered inside the simplex. Default is ``False``. :raises ValueError: If the labels of the point are different from those passed in the ``__init__`` method. :return: ``True`` if the point is inside the domain, ``False`` otherwise. :rtype: bool """ if not all(label in self.variables for label in point.labels): raise ValueError( "Point labels different from constructor" f" dictionary labels. Got {point.labels}," f" expected {self.variables}." ) point_shift = point - self._vertices_matrix[-1] point_shift = point_shift.tensor.reshape(-1, 1) # compute barycentric coordinates lambda_ = torch.linalg.solve( self._vectors_shifted * 1.0, point_shift * 1.0 ) lambda_1 = 1.0 - torch.sum(lambda_) lambdas = torch.vstack([lambda_, lambda_1]) # perform checks if not check_border: return all(torch.gt(lambdas, 0.0)) and all(torch.lt(lambdas, 1.0)) return all(torch.ge(lambdas, 0)) and ( any(torch.eq(lambdas, 0)) or any(torch.eq(lambdas, 1)) )
def _sample_interior_randomly(self, n, variables): """ Sample at random points from the interior of the simplex. Boundaries are excluded from this sampling routine. :param int n: Number of points to sample. :param list[str] variables: variables to be sampled. :return: Sampled points. :rtype: list[torch.Tensor] """ # =============== For Developers ================ # # # The sampling startegy used is fairly simple. # First we sample a random vector from the hypercube # which contains the simplex. Then, if the point # sampled is inside the simplex, we add it as a valid # one. # # =============================================== # sampled_points = [] while len(sampled_points) < n: sampled_point = self._cartesian_bound.sample( n=1, mode="random", variables=variables ) if self.is_inside(sampled_point, self._sample_surface): sampled_points.append(sampled_point) return torch.cat(sampled_points, dim=0) def _sample_boundary_randomly(self, n): """ Sample at random points from the boundary of the simplex. :param int n: Number of points to sample. :return: Sampled points. :rtype: torch.Tensor """ # =============== For Developers ================ # # # The sampling startegy used is fairly simple. # We first sample the lambdas in [0, 1] domain, # we then set to zero only one lambda, and normalize. # Finally, we compute the matrix product between the # lamdas and the vertices matrix. # # =============================================== # sampled_points = [] while len(sampled_points) < n: # extract number of vertices number_of_vertices = self._vertices_matrix.shape[0] # extract idx lambda to set to zero randomly idx_lambda = torch.randint( low=0, high=number_of_vertices, size=(1,) ) # build lambda vector # 1. sampling [1, 2) lambdas = torch.rand((number_of_vertices, 1)) # 2. setting lambdas[idx_lambda] to 0 lambdas[idx_lambda] = 0 # 3. normalize lambdas /= lambdas.sum() # 4. compute dot product sampled_points.append(self._vertices_matrix.T @ lambdas) return torch.cat(sampled_points, dim=1).T
[docs] def sample(self, n, mode="random", variables="all"): """ Sampling routine. :param int n: Number of points to sample. :param str mode: Sampling method. Default is ``random``. Available modes: random sampling, ``random``. :param list[str] variables: variables to be sampled. Default is ``all``. :raises NotImplementedError: If the sampling method is not implemented. :return: Sampled points. :rtype: LabelTensor .. warning:: When ``sample_surface=True``, all variables are sampled, ignoring the ``variables`` parameter. """ if variables == "all": variables = self.variables elif isinstance(variables, (list, tuple)): variables = sorted(variables) if mode in self.sample_modes: if self._sample_surface: sample_pts = self._sample_boundary_randomly(n) else: sample_pts = self._sample_interior_randomly(n, variables) else: raise NotImplementedError(f"mode={mode} is not implemented.") return LabelTensor(sample_pts, labels=self.variables)