Source code for pina.domain.exclusion_domain

"""Module for the Exclusion Operation."""

import random
import torch
from ..label_tensor import LabelTensor
from .operation_interface import OperationInterface


[docs] class Exclusion(OperationInterface): r""" Implementation of the exclusion operation between of a list of domains. Given two sets :math:`A` and :math:`B`, define the exclusion of the two sets as: .. math:: A \setminus B = \{x \mid x \in A \land x \in B \land x \not\in(A \lor B)\}, where :math:`x` is a point in :math:`\mathbb{R}^N`. """ def __init__(self, geometries): """ Initialization of the :class:`Exclusion` class. :param list[DomainInterface] geometries: A list of instances of the :class:`~pina.domain.domain_interface.DomainInterface` class on which the exclusion operation is performed. :Example: >>> # Create two ellipsoid domains >>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]}) >>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]}) >>> # Define the exclusion between the domains >>> exclusion = Exclusion([ellipsoid1, ellipsoid2]) """ super().__init__(geometries)
[docs] def is_inside(self, point, check_border=False): """ Check if a point is inside the resulting domain. :param LabelTensor point: Point to be checked. :param bool check_border: If ``True``, the border is considered inside the domain. Default is ``False``. :return: ``True`` if the point is inside the domain, ``False`` otherwise. :rtype: bool """ flag = 0 for geometry in self.geometries: if geometry.is_inside(point, check_border): flag += 1 return flag == 1
[docs] def sample(self, n, mode="random", variables="all"): """ Sampling routine. :param int n: Number of points to sample. :param str mode: Sampling method. Default is ``random``. Available modes: random sampling, ``random``; :param list[str] variables: variables to be sampled. Default is ``all``. :raises NotImplementedError: If the sampling method is not implemented. :return: Sampled points. :rtype: LabelTensor :Example: >>> # Create two Cartesian domains >>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]}) >>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]}) >>> # Define the exclusion between the domains >>> Exclusion = Exclusion([cartesian1, cartesian2]) >>> # Sample >>> Exclusion.sample(n=5) LabelTensor([[2.4187, 1.5792], [2.7456, 2.3868], [2.3830, 1.7037], [0.8636, 1.8453], [0.1978, 0.3526]]) >>> len(Exclusion.sample(n=5) 5 """ if mode not in self.sample_modes: raise NotImplementedError( f"{mode} is not a valid mode for sampling." ) sampled = [] # calculate the number of points to sample for each geometry and the # remainder. remainder = n % len(self.geometries) num_points = n // len(self.geometries) # sample the points # NB. geometries as shuffled since if we sample # multiple times just one point, we would end # up sampling only from the first geometry. iter_ = random.sample(self.geometries, len(self.geometries)) for i, geometry in enumerate(iter_): sampled_points = [] # int(i < remainder) is one only if we have a remainder # different than zero. Notice that len(geometries) is # always smaller than remaider. # makes sure point is uniquely inside 1 shape. while len(sampled_points) < (num_points + int(i < remainder)): sample = geometry.sample(1, mode, variables) # if not self.is_inside(sample) --> will be the intersection if self.is_inside(sample): sampled_points.append(sample) sampled += sampled_points return LabelTensor(torch.cat(sampled), labels=self.variables)