"""Module for the Exclusion Operation."""importrandomimporttorchfrom..label_tensorimportLabelTensorfrom.operation_interfaceimportOperationInterface
[docs]classExclusion(OperationInterface):r""" Implementation of the exclusion operation between of a list of domains. Given two sets :math:`A` and :math:`B`, define the exclusion of the two sets as: .. math:: A \setminus B = \{x \mid x \in A \land x \in B \land x \not\in(A \lor B)\}, where :math:`x` is a point in :math:`\mathbb{R}^N`. """def__init__(self,geometries):""" Initialization of the :class:`Exclusion` class. :param list[DomainInterface] geometries: A list of instances of the :class:`~pina.domain.domain_interface.DomainInterface` class on which the exclusion operation is performed. :Example: >>> # Create two ellipsoid domains >>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]}) >>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]}) >>> # Define the exclusion between the domains >>> exclusion = Exclusion([ellipsoid1, ellipsoid2]) """super().__init__(geometries)
[docs]defis_inside(self,point,check_border=False):""" Check if a point is inside the resulting domain. :param LabelTensor point: Point to be checked. :param bool check_border: If ``True``, the border is considered inside the domain. Default is ``False``. :return: ``True`` if the point is inside the domain, ``False`` otherwise. :rtype: bool """flag=0forgeometryinself.geometries:ifgeometry.is_inside(point,check_border):flag+=1returnflag==1
[docs]defsample(self,n,mode="random",variables="all"):""" Sampling routine. :param int n: Number of points to sample. :param str mode: Sampling method. Default is ``random``. Available modes: random sampling, ``random``; :param list[str] variables: variables to be sampled. Default is ``all``. :raises NotImplementedError: If the sampling method is not implemented. :return: Sampled points. :rtype: LabelTensor :Example: >>> # Create two Cartesian domains >>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]}) >>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]}) >>> # Define the exclusion between the domains >>> Exclusion = Exclusion([cartesian1, cartesian2]) >>> # Sample >>> Exclusion.sample(n=5) LabelTensor([[2.4187, 1.5792], [2.7456, 2.3868], [2.3830, 1.7037], [0.8636, 1.8453], [0.1978, 0.3526]]) >>> len(Exclusion.sample(n=5) 5 """ifmodenotinself.sample_modes:raiseNotImplementedError(f"{mode} is not a valid mode for sampling.")sampled=[]# calculate the number of points to sample for each geometry and the# remainder.remainder=n%len(self.geometries)num_points=n//len(self.geometries)# sample the points# NB. geometries as shuffled since if we sample# multiple times just one point, we would end# up sampling only from the first geometry.iter_=random.sample(self.geometries,len(self.geometries))fori,geometryinenumerate(iter_):sampled_points=[]# int(i < remainder) is one only if we have a remainder# different than zero. Notice that len(geometries) is# always smaller than remaider.# makes sure point is uniquely inside 1 shape.whilelen(sampled_points)<(num_points+int(i<remainder)):sample=geometry.sample(1,mode,variables)# if not self.is_inside(sample) --> will be the intersectionifself.is_inside(sample):sampled_points.append(sample)sampled+=sampled_pointsreturnLabelTensor(torch.cat(sampled),labels=self.variables)