Source code for pina.domain.ellipsoid

"""Module for the Ellipsoid Domain."""

import torch
from .domain_interface import DomainInterface
from ..label_tensor import LabelTensor
from ..utils import check_consistency


[docs] class EllipsoidDomain(DomainInterface): """ Implementation of the ellipsoid domain. """ def __init__(self, ellipsoid_dict, sample_surface=False): """ Initialization of the :class:`EllipsoidDomain` class. :param dict ellipsoid_dict: A dictionary where the keys are the variable names and the values are the domain extrema. :param bool sample_surface: A flag to choose the sampling strategy. If ``True``, samples are taken from the surface of the ellipsoid. If ``False``, samples are taken from the interior of the ellipsoid. Default is ``False``. :raises TypeError: If the input dictionary is not correctly formatted. .. warning:: Sampling for dimensions greater or equal to 10 could result in a shrinkage of the ellipsoid, which degrades the quality of the samples. For dimensions higher than 10, see the following reference. .. seealso:: **Original reference**: Dezert, Jean, and Musso, Christian. *An efficient method for generating points uniformly distributed in hyperellipsoids.* Proceedings of the Workshop on Estimation, Tracking and Fusion: A Tribute to Yaakov Bar-Shalom. 2001. :Example: >>> spatial_domain = Ellipsoid({'x':[-1, 1], 'y':[-1,1]}) """ self.fixed_ = {} self.range_ = {} self._centers = None self._axis = None # checking consistency check_consistency(sample_surface, bool) self._sample_surface = sample_surface for k, v in ellipsoid_dict.items(): if isinstance(v, (int, float)): self.fixed_[k] = v elif isinstance(v, (list, tuple)) and len(v) == 2: self.range_[k] = v else: raise TypeError # perform operation only for not fixed variables (if any) if self.range_: # convert dict vals to torch [dim, 2] matrix list_dict_vals = list(self.range_.values()) tmp = torch.tensor(list_dict_vals, dtype=torch.float) # get the ellipsoid center normal_basis = torch.eye(len(list_dict_vals)) centers = torch.diag(normal_basis * tmp.mean(axis=1)) # get the ellipsoid axis ellipsoid_axis = (tmp - centers.reshape(-1, 1))[:, -1] # save elipsoid axis and centers as dict self._centers = dict(zip(self.range_.keys(), centers.tolist())) self._axis = dict(zip(self.range_.keys(), ellipsoid_axis.tolist())) @property def sample_modes(self): """ List of available sampling modes. :return: List of available sampling modes. :rtype: list[str] """ return ["random"] @property def variables(self): """ List of variables of the domain. :return: List of variables of the domain. :rtype: list[str] """ return sorted(list(self.fixed_.keys()) + list(self.range_.keys()))
[docs] def is_inside(self, point, check_border=False): """ Check if a point is inside the ellipsoid. :param LabelTensor point: Point to be checked. :param bool check_border: If ``True``, the border is considered inside the ellipsoid. Default is ``False``. :raises ValueError: If the labels of the point are different from those passed in the ``__init__`` method. :return: ``True`` if the point is inside the domain, ``False`` otherwise. :rtype: bool .. note:: When ``sample_surface=True`` in the ``__init__`` method, this method checks only those points lying on the surface of the ellipsoid. """ # small check that point is labeltensor check_consistency(point, LabelTensor) # get axis ellipse as tensors list_dict_vals = list(self._axis.values()) tmp = torch.tensor(list_dict_vals, dtype=torch.float) ax_sq = LabelTensor(tmp.reshape(1, -1) ** 2, self.variables) # get centers ellipse as tensors list_dict_vals = list(self._centers.values()) tmp = torch.tensor(list_dict_vals, dtype=torch.float) centers = LabelTensor(tmp.reshape(1, -1), self.variables) if not all(i in ax_sq.labels for i in point.labels): raise ValueError( "point labels different from constructor" f" dictionary labels. Got {point.labels}," f" expected {ax_sq.labels}." ) # point square + shift center point_sq = (point - centers).pow(2) point_sq.labels = point.labels # calculate ellispoid equation eqn = torch.sum(point_sq.extract(ax_sq.labels) / ax_sq) - 1.0 # if we have sampled only the surface, we check that the # point is inside the surface border only if self._sample_surface: return torch.allclose(eqn, torch.zeros_like(eqn)) # otherwise we check the ellipse if check_border: return bool(eqn <= 0) return bool(eqn < 0)
def _sample_range(self, n, mode, variables): """ Rescale the samples to fit within the specified bounds. :param int n: Number of points to sample. :param str mode: Sampling method. Default is ``random``. :param list[str] variables: variables whose samples must be rescaled. :return: Rescaled sample points. :rtype: torch.Tensor """ # =============== For Developers ================ # # # The sampling startegy used is fairly simple. # For all `mode`s first we sample from the unit # sphere and then we scale and shift according # to self._axis.values() and self._centers.values(). # # =============================================== # # get dimension dim = len(variables) # get values center pairs_center = [ (k, v) for k, v in self._centers.items() if k in variables ] _, values_center = map(list, zip(*pairs_center)) values_center = torch.tensor(values_center) # get values axis pairs_axis = [(k, v) for k, v in self._axis.items() if k in variables] _, values_axis = map(list, zip(*pairs_axis)) values_axis = torch.tensor(values_axis) # Sample in the unit sphere if mode == "random": # 1. Sample n points from the surface of a unit sphere # 2. Scale each dimension using torch.rand() # (a random number between 0-1) so that it lies within # the sphere, only if self._sample_surface=False # 3. Multiply with self._axis.values() to make it ellipsoid # 4. Shift the mean of the ellipse by adding self._centers.values() # step 1. pts = torch.randn(size=(n, dim)) pts = pts / torch.linalg.norm(pts, axis=-1).view((n, 1)) if not self._sample_surface: # step 2. scale = torch.rand((n, 1)) pts = pts * scale # step 3. and 4. pts *= values_axis pts += values_center return pts
[docs] def sample(self, n, mode="random", variables="all"): """ Sampling routine. :param int n: Number of points to sample. :param str mode: Sampling method. Default is ``random``. Available modes: random sampling, ``random``. :param list[str] variables: variables to be sampled. Default is ``all``. :raises NotImplementedError: If the sampling mode is not implemented. :return: Sampled points. :rtype: LabelTensor :Example: >>> ellipsoid = Ellipsoid({'x':[1, 0], 'y':1}) >>> ellipsoid.sample(n=6) tensor([[0.4872, 1.0000], [0.2977, 1.0000], [0.0422, 1.0000], [0.6431, 1.0000], [0.7272, 1.0000], [0.8326, 1.0000]]) """ def _Nd_sampler(n, mode, variables): """ Sample all variables together. :param int n: Number of points to sample. :param str mode: Sampling method. :param list[str] variables: variables to be sampled. :return: Sampled points. :rtype: list[LabelTensor] """ pairs = [(k, v) for k, v in self.range_.items() if k in variables] keys, _ = map(list, zip(*pairs)) result = self._sample_range(n, mode, keys) result = result.as_subclass(LabelTensor) result.labels = keys for variable in variables: if variable in self.fixed_: value = self.fixed_[variable] pts_variable = torch.tensor([[value]]).repeat( result.shape[0], 1 ) pts_variable = pts_variable.as_subclass(LabelTensor) pts_variable.labels = [variable] result = result.append(pts_variable, mode="std") return result def _single_points_sample(n, variables): """ Sample a single point in one dimension. :param int n: Number of points to sample. :param list[str] variables: variables to be sampled. :return: Sampled points. :rtype: list[torch.Tensor] """ tmp = [] for variable in variables: if variable in self.fixed_: value = self.fixed_[variable] pts_variable = torch.tensor([[value]]).repeat(n, 1) pts_variable = pts_variable.as_subclass(LabelTensor) pts_variable.labels = [variable] tmp.append(pts_variable) result = tmp[0] for i in tmp[1:]: result = result.append(i, mode="std") return result if variables == "all": variables = self.variables elif isinstance(variables, (list, tuple)): variables = sorted(variables) if self.fixed_ and (not self.range_): return _single_points_sample(n, variables).extract(variables) if mode in self.sample_modes: return _Nd_sampler(n, mode, variables).extract(variables) raise NotImplementedError(f"mode={mode} is not implemented.")