"""Module for the Ellipsoid Domain."""
import torch
from .domain_interface import DomainInterface
from ..label_tensor import LabelTensor
from ..utils import check_consistency
[docs]
class EllipsoidDomain(DomainInterface):
"""
Implementation of the ellipsoid domain.
"""
def __init__(self, ellipsoid_dict, sample_surface=False):
"""
Initialization of the :class:`EllipsoidDomain` class.
:param dict ellipsoid_dict: A dictionary where the keys are the variable
names and the values are the domain extrema.
:param bool sample_surface: A flag to choose the sampling strategy.
If ``True``, samples are taken from the surface of the ellipsoid.
If ``False``, samples are taken from the interior of the ellipsoid.
Default is ``False``.
:raises TypeError: If the input dictionary is not correctly formatted.
.. warning::
Sampling for dimensions greater or equal to 10 could result in a
shrinkage of the ellipsoid, which degrades the quality of the
samples. For dimensions higher than 10, see the following reference.
.. seealso::
**Original reference**: Dezert, Jean, and Musso, Christian.
*An efficient method for generating points uniformly distributed
in hyperellipsoids.*
Proceedings of the Workshop on Estimation, Tracking and Fusion:
A Tribute to Yaakov Bar-Shalom. 2001.
:Example:
>>> spatial_domain = Ellipsoid({'x':[-1, 1], 'y':[-1,1]})
"""
self.fixed_ = {}
self.range_ = {}
self._centers = None
self._axis = None
# checking consistency
check_consistency(sample_surface, bool)
self._sample_surface = sample_surface
for k, v in ellipsoid_dict.items():
if isinstance(v, (int, float)):
self.fixed_[k] = v
elif isinstance(v, (list, tuple)) and len(v) == 2:
self.range_[k] = v
else:
raise TypeError
# perform operation only for not fixed variables (if any)
if self.range_:
# convert dict vals to torch [dim, 2] matrix
list_dict_vals = list(self.range_.values())
tmp = torch.tensor(list_dict_vals, dtype=torch.float)
# get the ellipsoid center
normal_basis = torch.eye(len(list_dict_vals))
centers = torch.diag(normal_basis * tmp.mean(axis=1))
# get the ellipsoid axis
ellipsoid_axis = (tmp - centers.reshape(-1, 1))[:, -1]
# save elipsoid axis and centers as dict
self._centers = dict(zip(self.range_.keys(), centers.tolist()))
self._axis = dict(zip(self.range_.keys(), ellipsoid_axis.tolist()))
@property
def sample_modes(self):
"""
List of available sampling modes.
:return: List of available sampling modes.
:rtype: list[str]
"""
return ["random"]
@property
def variables(self):
"""
List of variables of the domain.
:return: List of variables of the domain.
:rtype: list[str]
"""
return sorted(list(self.fixed_.keys()) + list(self.range_.keys()))
[docs]
def is_inside(self, point, check_border=False):
"""
Check if a point is inside the ellipsoid.
:param LabelTensor point: Point to be checked.
:param bool check_border: If ``True``, the border is considered inside
the ellipsoid. Default is ``False``.
:raises ValueError: If the labels of the point are different from those
passed in the ``__init__`` method.
:return: ``True`` if the point is inside the domain,
``False`` otherwise.
:rtype: bool
.. note::
When ``sample_surface=True`` in the ``__init__`` method, this method
checks only those points lying on the surface of the ellipsoid.
"""
# small check that point is labeltensor
check_consistency(point, LabelTensor)
# get axis ellipse as tensors
list_dict_vals = list(self._axis.values())
tmp = torch.tensor(list_dict_vals, dtype=torch.float)
ax_sq = LabelTensor(tmp.reshape(1, -1) ** 2, self.variables)
# get centers ellipse as tensors
list_dict_vals = list(self._centers.values())
tmp = torch.tensor(list_dict_vals, dtype=torch.float)
centers = LabelTensor(tmp.reshape(1, -1), self.variables)
if not all(i in ax_sq.labels for i in point.labels):
raise ValueError(
"point labels different from constructor"
f" dictionary labels. Got {point.labels},"
f" expected {ax_sq.labels}."
)
# point square + shift center
point_sq = (point - centers).pow(2)
point_sq.labels = point.labels
# calculate ellispoid equation
eqn = torch.sum(point_sq.extract(ax_sq.labels) / ax_sq) - 1.0
# if we have sampled only the surface, we check that the
# point is inside the surface border only
if self._sample_surface:
return torch.allclose(eqn, torch.zeros_like(eqn))
# otherwise we check the ellipse
if check_border:
return bool(eqn <= 0)
return bool(eqn < 0)
def _sample_range(self, n, mode, variables):
"""
Rescale the samples to fit within the specified bounds.
:param int n: Number of points to sample.
:param str mode: Sampling method. Default is ``random``.
:param list[str] variables: variables whose samples must be rescaled.
:return: Rescaled sample points.
:rtype: torch.Tensor
"""
# =============== For Developers ================ #
#
# The sampling startegy used is fairly simple.
# For all `mode`s first we sample from the unit
# sphere and then we scale and shift according
# to self._axis.values() and self._centers.values().
#
# =============================================== #
# get dimension
dim = len(variables)
# get values center
pairs_center = [
(k, v) for k, v in self._centers.items() if k in variables
]
_, values_center = map(list, zip(*pairs_center))
values_center = torch.tensor(values_center)
# get values axis
pairs_axis = [(k, v) for k, v in self._axis.items() if k in variables]
_, values_axis = map(list, zip(*pairs_axis))
values_axis = torch.tensor(values_axis)
# Sample in the unit sphere
if mode == "random":
# 1. Sample n points from the surface of a unit sphere
# 2. Scale each dimension using torch.rand()
# (a random number between 0-1) so that it lies within
# the sphere, only if self._sample_surface=False
# 3. Multiply with self._axis.values() to make it ellipsoid
# 4. Shift the mean of the ellipse by adding self._centers.values()
# step 1.
pts = torch.randn(size=(n, dim))
pts = pts / torch.linalg.norm(pts, axis=-1).view((n, 1))
if not self._sample_surface: # step 2.
scale = torch.rand((n, 1))
pts = pts * scale
# step 3. and 4.
pts *= values_axis
pts += values_center
return pts
[docs]
def sample(self, n, mode="random", variables="all"):
"""
Sampling routine.
:param int n: Number of points to sample.
:param str mode: Sampling method. Default is ``random``.
Available modes: random sampling, ``random``.
:param list[str] variables: variables to be sampled. Default is ``all``.
:raises NotImplementedError: If the sampling mode is not implemented.
:return: Sampled points.
:rtype: LabelTensor
:Example:
>>> ellipsoid = Ellipsoid({'x':[1, 0], 'y':1})
>>> ellipsoid.sample(n=6)
tensor([[0.4872, 1.0000],
[0.2977, 1.0000],
[0.0422, 1.0000],
[0.6431, 1.0000],
[0.7272, 1.0000],
[0.8326, 1.0000]])
"""
def _Nd_sampler(n, mode, variables):
"""
Sample all variables together.
:param int n: Number of points to sample.
:param str mode: Sampling method.
:param list[str] variables: variables to be sampled.
:return: Sampled points.
:rtype: list[LabelTensor]
"""
pairs = [(k, v) for k, v in self.range_.items() if k in variables]
keys, _ = map(list, zip(*pairs))
result = self._sample_range(n, mode, keys)
result = result.as_subclass(LabelTensor)
result.labels = keys
for variable in variables:
if variable in self.fixed_:
value = self.fixed_[variable]
pts_variable = torch.tensor([[value]]).repeat(
result.shape[0], 1
)
pts_variable = pts_variable.as_subclass(LabelTensor)
pts_variable.labels = [variable]
result = result.append(pts_variable, mode="std")
return result
def _single_points_sample(n, variables):
"""
Sample a single point in one dimension.
:param int n: Number of points to sample.
:param list[str] variables: variables to be sampled.
:return: Sampled points.
:rtype: list[torch.Tensor]
"""
tmp = []
for variable in variables:
if variable in self.fixed_:
value = self.fixed_[variable]
pts_variable = torch.tensor([[value]]).repeat(n, 1)
pts_variable = pts_variable.as_subclass(LabelTensor)
pts_variable.labels = [variable]
tmp.append(pts_variable)
result = tmp[0]
for i in tmp[1:]:
result = result.append(i, mode="std")
return result
if variables == "all":
variables = self.variables
elif isinstance(variables, (list, tuple)):
variables = sorted(variables)
if self.fixed_ and (not self.range_):
return _single_points_sample(n, variables).extract(variables)
if mode in self.sample_modes:
return _Nd_sampler(n, mode, variables).extract(variables)
raise NotImplementedError(f"mode={mode} is not implemented.")