Source code for pina.domain.cartesian

"""Module for the Cartesian Domain."""

import torch

from .domain_interface import DomainInterface
from ..label_tensor import LabelTensor
from ..utils import torch_lhs, chebyshev_roots


[docs] class CartesianDomain(DomainInterface): """ Implementation of the hypercube domain. """ def __init__(self, cartesian_dict): """ Initialization of the :class:`CartesianDomain` class. :param dict cartesian_dict: A dictionary where the keys are the variable names and the values are the domain extrema. The domain extrema can be either a list with two elements or a single number. If the domain extrema is a single number, the variable is fixed to that value. :Example: >>> spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]}) """ self.fixed_ = {} self.range_ = {} for k, v in cartesian_dict.items(): if isinstance(v, (int, float)): self.fixed_[k] = v elif isinstance(v, (list, tuple)) and len(v) == 2: self.range_[k] = v else: raise TypeError @property def sample_modes(self): """ List of available sampling modes. :return: List of available sampling modes. :rtype: list[str] """ return ["random", "grid", "lh", "chebyshev", "latin"] @property def variables(self): """ List of variables of the domain. :return: List of variables of the domain. :rtype: list[str] """ return sorted(list(self.fixed_.keys()) + list(self.range_.keys()))
[docs] def update(self, new_domain): """ Add new dimensions to an existing :class:`CartesianDomain` object. :param CartesianDomain new_domain: New domain to be added to an existing :class:`CartesianDomain` object. :Example: >>> spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]}) >>> spatial_domain.variables ['x', 'y'] >>> spatial_domain_2 = CartesianDomain({'z': [3, 4], 'w': [0, 1]}) >>> spatial_domain.update(spatial_domain_2) >>> spatial_domain.variables ['x', 'y', 'z', 'w'] """ self.fixed_.update(new_domain.fixed_) self.range_.update(new_domain.range_)
def _sample_range(self, n, mode, bounds): """ Rescale the samples to fit within the specified bounds. :param int n: Number of points to sample. :param str mode: Sampling method. Default is ``random``. :param torch.Tensor bounds: Bounds of the domain. :raises RuntimeError: Wrong bounds initialization. :raises ValueError: Invalid sampling mode. :return: Rescaled sample points. :rtype: torch.Tensor """ dim = bounds.shape[0] if mode in ["chebyshev", "grid"] and dim != 1: raise RuntimeError("Wrong bounds initialization") if mode == "random": pts = torch.rand(size=(n, dim)) elif mode == "chebyshev": pts = chebyshev_roots(n).mul(0.5).add(0.5).reshape(-1, 1) elif mode == "grid": pts = torch.linspace(0, 1, n).reshape(-1, 1) elif mode in ["lh", "latin"]: pts = torch_lhs(n, dim) else: raise ValueError("Invalid mode") return pts * (bounds[:, 1] - bounds[:, 0]) + bounds[:, 0]
[docs] def sample(self, n, mode="random", variables="all"): """ Sampling routine. :param int n: Number of points to sample, see Note below for reference. :param str mode: Sampling method. Default is ``random``. Available modes: random sampling, ``random``; latin hypercube sampling, ``latin`` or ``lh``; chebyshev sampling, ``chebyshev``; grid sampling ``grid``. :param list[str] variables: variables to be sampled. Default is ``all``. :return: Sampled points. :rtype: LabelTensor .. note:: When multiple variables are involved, the total number of sampled points may differ from ``n``, depending on the chosen ``mode``. If ``mode`` is ``grid`` or ``chebyshev``, points are sampled independently for each variable and then combined, resulting in a total number of points equal to ``n`` raised to the power of the number of variables. If 'mode' is 'random', ``lh`` or ``latin``, all variables are sampled together, and the total number of points remains ``n``. .. warning:: The extrema of CartesianDomain are only sampled when using the ``grid`` mode. :Example: >>> spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]}) >>> spatial_domain.sample(n=4, mode='random') tensor([[0.0108, 0.7643], [0.4477, 0.8015], [0.2063, 0.8087], [0.8735, 0.6349]]) >>> spatial_domain.sample(n=4, mode='grid') tensor([[0.0000, 0.0000], [0.3333, 0.0000], [0.6667, 0.0000], [1.0000, 0.0000], [0.0000, 0.3333], [0.3333, 0.3333], [0.6667, 0.3333], [1.0000, 0.3333], [0.0000, 0.6667], [0.3333, 0.6667], [0.6667, 0.6667], [1.0000, 0.6667], [0.0000, 1.0000], [0.3333, 1.0000], [0.6667, 1.0000], [1.0000, 1.0000]]) """ def _1d_sampler(n, mode, variables): """ Sample each variable independently. :param int n: Number of points to sample. :param str mode: Sampling method. :param list[str] variables: variables to be sampled. :return: Sampled points. :rtype: list[LabelTensor] """ tmp = [] for variable in variables: if variable in self.range_: bound = torch.tensor([self.range_[variable]]) pts_variable = self._sample_range(n, mode, bound) pts_variable = pts_variable.as_subclass(LabelTensor) pts_variable.labels = [variable] tmp.append(pts_variable) if tmp: result = tmp[0] for i in tmp[1:]: result = result.append(i, mode="cross") for variable in variables: if variable in self.fixed_: value = self.fixed_[variable] pts_variable = torch.tensor([[value]]).repeat( result.shape[0], 1 ) pts_variable = pts_variable.as_subclass(LabelTensor) pts_variable.labels = [variable] result = result.append(pts_variable, mode="std") return result def _Nd_sampler(n, mode, variables): """ Sample all variables together. :param int n: Number of points to sample. :param str mode: Sampling method. :param list[str] variables: variables to be sampled. :return: Sampled points. :rtype: list[LabelTensor] """ pairs = [(k, v) for k, v in self.range_.items() if k in variables] keys, values = map(list, zip(*pairs)) bounds = torch.tensor(values) result = self._sample_range(n, mode, bounds) result = result.as_subclass(LabelTensor) result.labels = keys for variable in variables: if variable in self.fixed_: value = self.fixed_[variable] pts_variable = torch.tensor([[value]]).repeat( result.shape[0], 1 ) pts_variable = pts_variable.as_subclass(LabelTensor) pts_variable.labels = [variable] result = result.append(pts_variable, mode="std") return result def _single_points_sample(n, variables): """ Sample a single point in one dimension. :param int n: Number of points to sample. :param list[str] variables: variables to be sampled. :return: Sampled points. :rtype: list[torch.Tensor] """ tmp = [] for variable in variables: if variable in self.fixed_: value = self.fixed_[variable] pts_variable = torch.tensor([[value]]).repeat(n, 1) pts_variable = pts_variable.as_subclass(LabelTensor) pts_variable.labels = [variable] tmp.append(pts_variable) result = tmp[0] for i in tmp[1:]: result = result.append(i, mode="std") return result if variables == "all": variables = self.variables elif isinstance(variables, (list, tuple)): variables = sorted(variables) if self.fixed_ and (not self.range_): return _single_points_sample(n, variables) if isinstance(variables, str) and variables in self.fixed_: return _single_points_sample(n, variables) if mode in ["grid", "chebyshev"]: return _1d_sampler(n, mode, variables).extract(variables) if mode in ["random", "lh", "latin"]: return _Nd_sampler(n, mode, variables).extract(variables) raise ValueError(f"mode={mode} is not valid.")
[docs] def is_inside(self, point, check_border=False): """ Check if a point is inside the hypercube. :param LabelTensor point: Point to be checked. :param bool check_border: If ``True``, the border is considered inside the hypercube. Default is ``False``. :return: ``True`` if the point is inside the domain, ``False`` otherwise. :rtype: bool """ is_inside = [] # check fixed variables for variable, value in self.fixed_.items(): if variable in point.labels: is_inside.append(point.extract([variable]) == value) # check not fixed variables for variable, bound in self.range_.items(): if variable in point.labels: if check_border: check = bound[0] <= point.extract([variable]) <= bound[1] else: check = bound[0] < point.extract([variable]) < bound[1] is_inside.append(check) return all(is_inside)