"""Module for the PINA dataset classes."""
from abc import abstractmethod, ABC
from torch.utils.data import Dataset
from torch_geometric.data import Data
from ..graph import Graph, LabelBatch
[docs]
class PinaDatasetFactory:
"""
Factory class for the PINA dataset.
Depending on the data type inside the conditions, it instanciate an object
belonging to the appropriate subclass of
:class:`~pina.data.dataset.PinaDataset`. The possible subclasses are:
- :class:`~pina.data.dataset.PinaTensorDataset`, for handling \
:class:`torch.Tensor` and :class:`~pina.label_tensor.LabelTensor` data.
- :class:`~pina.data.dataset.PinaGraphDataset`, for handling \
:class:`~pina.graph.Graph` and :class:`~torch_geometric.data.Data` data.
"""
def __new__(cls, conditions_dict, **kwargs):
"""
Instantiate the appropriate subclass of
:class:`~pina.data.dataset.PinaDataset`.
If a graph is present in the conditions, returns a
:class:`~pina.data.dataset.PinaGraphDataset`, otherwise returns a
:class:`~pina.data.dataset.PinaTensorDataset`.
:param dict conditions_dict: Dictionary containing all the conditions
to be included in the dataset instance.
:return: A subclass of :class:`~pina.data.dataset.PinaDataset`.
:rtype: PinaTensorDataset | PinaGraphDataset
:raises ValueError: If an empty dictionary is provided.
"""
# Check if conditions_dict is empty
if len(conditions_dict) == 0:
raise ValueError("No conditions provided")
# Check is a Graph is present in the conditions
is_graph = cls._is_graph_dataset(conditions_dict)
if is_graph:
# If a Graph is present, return a PinaGraphDataset
return PinaGraphDataset(conditions_dict, **kwargs)
# If no Graph is present, return a PinaTensorDataset
return PinaTensorDataset(conditions_dict, **kwargs)
@staticmethod
def _is_graph_dataset(conditions_dict):
"""
Check if a graph is present in the conditions (at least one time).
:param conditions_dict: Dictionary containing the conditions.
:type conditions_dict: dict
:return: True if a graph is present in the conditions, False otherwise.
:rtype: bool
"""
# Iterate over the conditions dictionary
for v in conditions_dict.values():
# Iterate over the values of the current condition
for cond in v.values():
# Check if the current value is a list of Data objects
if isinstance(cond, (Data, Graph, list, tuple)):
return True
return False
[docs]
class PinaDataset(Dataset, ABC):
"""
Abstract class for the PINA dataset which extends the PyTorch
:class:`~torch.utils.data.Dataset` class. It defines the common interface
for :class:`~pina.data.dataset.PinaTensorDataset` and
:class:`~pina.data.dataset.PinaGraphDataset` classes.
"""
def __init__(
self, conditions_dict, max_conditions_lengths, automatic_batching
):
"""
Initialize the instance by storing the conditions dictionary, the
maximum number of items per conditions to consider, and the automatic
batching flag.
:param dict conditions_dict: A dictionary mapping condition names to
their respective data. Each key represents a condition name, and the
corresponding value is a dictionary containing the associated data.
:param dict max_conditions_lengths: Maximum number of data points that
can be included in a single batch per condition.
:param bool automatic_batching: Indicates whether PyTorch automatic
batching is enabled in
:class:`~pina.data.data_module.PinaDataModule`.
"""
# Store the conditions dictionary
self.conditions_dict = conditions_dict
# Store the maximum number of conditions to consider
self.max_conditions_lengths = max_conditions_lengths
# Store length of each condition
self.conditions_length = {
k: len(v["input"]) for k, v in self.conditions_dict.items()
}
# Store the maximum length of the dataset
self.length = max(self.conditions_length.values())
# Dynamically set the getitem function based on automatic batching
if automatic_batching:
self._getitem_func = self._getitem_int
else:
self._getitem_func = self._getitem_dummy
def _get_max_len(self):
"""
Returns the length of the longest condition in the dataset.
:return: Length of the longest condition in the dataset.
:rtype: int
"""
max_len = 0
for condition in self.conditions_dict.values():
max_len = max(max_len, len(condition["input"]))
return max_len
def __len__(self):
return self.length
def __getitem__(self, idx):
return self._getitem_func(idx)
def _getitem_dummy(self, idx):
"""
Return the index itself. This is used when automatic batching is
disabled to postpone the data retrieval to the dataloader.
:param int idx: Index.
:return: Index.
:rtype: int
"""
# If automatic batching is disabled, return the data at the given index
return idx
def _getitem_int(self, idx):
"""
Return the data at the given index in the dataset. This is used when
automatic batching is enabled.
:param int idx: Index.
:return: A dictionary containing the data at the given index.
:rtype: dict
"""
# If automatic batching is enabled, return the data at the given index
return {
k: {k_data: v[k_data][idx % len(v["input"])] for k_data in v.keys()}
for k, v in self.conditions_dict.items()
}
[docs]
def get_all_data(self):
"""
Return all data in the dataset.
:return: A dictionary containing all the data in the dataset.
:rtype: dict
"""
index = list(range(len(self)))
return self.fetch_from_idx_list(index)
[docs]
def fetch_from_idx_list(self, idx):
"""
Return data from the dataset given a list of indices.
:param list[int] idx: List of indices.
:return: A dictionary containing the data at the given indices.
:rtype: dict
"""
to_return_dict = {}
for condition, data in self.conditions_dict.items():
# Get the indices for the current condition
cond_idx = idx[: self.max_conditions_lengths[condition]]
# Get the length of the current condition
condition_len = self.conditions_length[condition]
# If the length of the dataset is greater than the length of the
# current condition, repeat the indices
if self.length > condition_len:
cond_idx = [idx % condition_len for idx in cond_idx]
# Retrieve the data from the current condition
to_return_dict[condition] = self._retrive_data(data, cond_idx)
return to_return_dict
@abstractmethod
def _retrive_data(self, data, idx_list):
"""
Abstract method to retrieve data from the dataset given a list of
indices.
"""
[docs]
class PinaTensorDataset(PinaDataset):
"""
Dataset class for the PINA dataset with :class:`torch.Tensor` and
:class:`~pina.label_tensor.LabelTensor` data.
"""
# Override _retrive_data method for torch.Tensor data
def _retrive_data(self, data, idx_list):
"""
Retrieve data from the dataset given a list of indices.
:param dict data: Dictionary containing the data
(only :class:`torch.Tensor` or
:class:`~pina.label_tensor.LabelTensor`).
:param list[int] idx_list: indices to retrieve.
:return: Dictionary containing the data at the given indices.
:rtype: dict
"""
return {k: v[idx_list] for k, v in data.items()}
@property
def input(self):
"""
Return the input data for the dataset.
:return: Dictionary containing the input points.
:rtype: dict
"""
return {k: v["input"] for k, v in self.conditions_dict.items()}
[docs]
class PinaGraphDataset(PinaDataset):
"""
Dataset class for the PINA dataset with :class:`~torch_geometric.data.Data`
and :class:`~pina.graph.Graph` data.
"""
def _create_graph_batch(self, data):
"""
Create a LabelBatch object from a list of
:class:`~torch_geometric.data.Data` objects.
:param data: List of items to collate in a single batch.
:type data: list[Data] | list[Graph]
:return: LabelBatch object all the graph collated in a single batch
disconnected graphs.
:rtype: LabelBatch
"""
batch = LabelBatch.from_data_list(data)
return batch
def _create_tensor_batch(self, data):
"""
Reshape properly ``data`` tensor to be processed handle by the graph
based models.
:param data: torch.Tensor object of shape ``(N, ...)`` where ``N`` is
the number of data objects.
:type data: torch.Tensor | LabelTensor
:return: Reshaped tensor object.
:rtype: torch.Tensor | LabelTensor
"""
out = data.reshape(-1, *data.shape[2:])
return out
[docs]
def create_batch(self, data):
"""
Create a Batch object from a list of :class:`~torch_geometric.data.Data`
objects.
:param data: List of items to collate in a single batch.
:type data: list[Data] | list[Graph]
:return: Batch object.
:rtype: :class:`~torch_geometric.data.Batch`
| :class:`~pina.graph.LabelBatch`
"""
if isinstance(data[0], Data):
return self._create_graph_batch(data)
return self._create_tensor_batch(data)
# Override _retrive_data method for graph handling
def _retrive_data(self, data, idx_list):
"""
Retrieve data from the dataset given a list of indices.
:param dict data: Dictionary containing the data.
:param list[int] idx_list: List of indices to retrieve.
:return: Dictionary containing the data at the given indices.
:rtype: dict
"""
# Return the data from the current condition
# If the data is a list of Data objects, create a Batch object
# If the data is a list of torch.Tensor objects, create a torch.Tensor
return {
k: (
self._create_graph_batch([v[i] for i in idx_list])
if isinstance(v, list)
else self._create_tensor_batch(v[idx_list])
)
for k, v in data.items()
}