Source code for pina.condition.input_equation_condition
"""Module for the InputEquationCondition class and its subclasses."""
from torch_geometric.data import Data
from .condition_interface import ConditionInterface
from ..label_tensor import LabelTensor
from ..graph import Graph
from ..utils import check_consistency
from ..equation.equation_interface import EquationInterface
[docs]
class InputEquationCondition(ConditionInterface):
"""
Condition defined by input data and an equation. This condition can be
used in a Physics Informed problems. Based on the type of the input,
different condition implementations are available:
- :class:`InputTensorEquationCondition`: For \
:class:`~pina.label_tensor.LabelTensor` input data.
- :class:`InputGraphEquationCondition`: For :class:`~pina.graph.Graph` \
input data.
"""
__slots__ = ["input", "equation"]
_avail_input_cls = (LabelTensor, Graph, list, tuple)
_avail_equation_cls = EquationInterface
def __new__(cls, input, equation):
"""
Instantiate the appropriate subclass of :class:`InputEquationCondition`
based on the type of ``input``.
:param input: Input data for the condition.
:type input: LabelTensor | Graph | list[Graph] | tuple[Graph]
:param EquationInterface equation: Equation object containing the
equation function.
:return: Subclass of InputEquationCondition, based on the input type.
:rtype: pina.condition.input_equation_condition.
InputTensorEquationCondition |
pina.condition.input_equation_condition.InputGraphEquationCondition
:raises ValueError: If input is not of type
:class:`~pina.label_tensor.LabelTensor`, :class:`~pina.graph.Graph`.
"""
# If the class is already a subclass, return the instance
if cls != InputEquationCondition:
return super().__new__(cls)
# Instanciate the correct subclass
if isinstance(input, (Graph, Data, list, tuple)):
subclass = InputGraphEquationCondition
cls._check_graph_list_consistency(input)
subclass._check_label_tensor(input)
return subclass.__new__(subclass, input, equation)
if isinstance(input, LabelTensor):
subclass = InputTensorEquationCondition
return subclass.__new__(subclass, input, equation)
# If the input is not a LabelTensor or a Graph object raise an error
raise ValueError(
"The input data object must be a LabelTensor or a Graph object."
)
def __init__(self, input, equation):
"""
Initialize the object by storing the input data and equation object.
:param input: Input data for the condition.
:type input: LabelTensor | Graph |
list[Graph] | tuple[Graph]
:param EquationInterface equation: Equation object containing the
equation function.
.. note::
If ``input`` consists of a list of :class:`~pina.graph.Graph` or
:class:`~torch_geometric.data.Data`, all elements must have the same
structure (keys and data types)
"""
super().__init__()
self.input = input
self.equation = equation
def __setattr__(self, key, value):
if key == "input":
check_consistency(value, self._avail_input_cls)
InputEquationCondition.__dict__[key].__set__(self, value)
elif key == "equation":
check_consistency(value, self._avail_equation_cls)
InputEquationCondition.__dict__[key].__set__(self, value)
elif key in ("_problem"):
super().__setattr__(key, value)
[docs]
class InputTensorEquationCondition(InputEquationCondition):
"""
InputEquationCondition subclass for :class:`~pina.label_tensor.LabelTensor`
input data.
"""
[docs]
class InputGraphEquationCondition(InputEquationCondition):
"""
InputEquationCondition subclass for :class:`~pina.graph.Graph` input data.
"""
@staticmethod
def _check_label_tensor(input):
"""
Check if at least one :class:`~pina.label_tensor.LabelTensor` is present
in the :class:`~pina.graph.Graph` object.
:param input: Input data.
:type input: torch.Tensor | Graph | Data
:raises ValueError: If the input data object does not contain at least
one LabelTensor.
"""
# Store the fist element of the list/tuple if input is a list/tuple
# it is anougth to check the first element because all elements must
# have the same type and structure (already checked)
data = input[0] if isinstance(input, (list, tuple)) else input
# Check if the input data contains at least one LabelTensor
for v in data.values():
if isinstance(v, LabelTensor):
return
raise ValueError(
"The input data object must contain at least one LabelTensor."
)