Source code for pina.callback.optimizer_callback

"""Module for the SwitchOptimizer callback."""

from lightning.pytorch.callbacks import Callback
from ..optim import TorchOptimizer
from ..utils import check_consistency


[docs] class SwitchOptimizer(Callback): """ PINA Implementation of a Lightning Callback to switch optimizer during training. """ def __init__(self, new_optimizers, epoch_switch): """ This callback allows switching between different optimizers during training, enabling the exploration of multiple optimization strategies without interrupting the training process. :param new_optimizers: The model optimizers to switch to. Can be a single :class:`torch.optim.Optimizer` instance or a list of them for multiple model solver. :type new_optimizers: pina.optim.TorchOptimizer | list :param epoch_switch: The epoch at which the optimizer switch occurs. :type epoch_switch: int Example: >>> switch_callback = SwitchOptimizer(new_optimizers=optimizer, >>> epoch_switch=10) """ super().__init__() if epoch_switch < 1: raise ValueError("epoch_switch must be greater than one.") if not isinstance(new_optimizers, list): new_optimizers = [new_optimizers] # check type consistency for optimizer in new_optimizers: check_consistency(optimizer, TorchOptimizer) check_consistency(epoch_switch, int) # save new optimizers self._new_optimizers = new_optimizers self._epoch_switch = epoch_switch
[docs] def on_train_epoch_start(self, trainer, __): """ Switch the optimizer at the start of the specified training epoch. :param trainer: The trainer object managing the training process. :type trainer: pytorch_lightning.Trainer :param _: Placeholder argument (not used). :return: None :rtype: None """ if trainer.current_epoch == self._epoch_switch: optims = [] for idx, optim in enumerate(self._new_optimizers): optim.hook(trainer.solver._pina_models[idx].parameters()) optims.append(optim) trainer.solver._pina_optimizers = optims