Source code for pina.callback.optimizer_callback
"""Module for the SwitchOptimizer callback."""
from lightning.pytorch.callbacks import Callback
from ..optim import TorchOptimizer
from ..utils import check_consistency
[docs]
class SwitchOptimizer(Callback):
"""
PINA Implementation of a Lightning Callback to switch optimizer during
training.
"""
def __init__(self, new_optimizers, epoch_switch):
"""
This callback allows switching between different optimizers during
training, enabling the exploration of multiple optimization strategies
without interrupting the training process.
:param new_optimizers: The model optimizers to switch to. Can be a
single :class:`torch.optim.Optimizer` instance or a list of them
for multiple model solver.
:type new_optimizers: pina.optim.TorchOptimizer | list
:param int epoch_switch: The epoch at which the optimizer switch occurs.
Example:
>>> optimizer = TorchOptimizer(torch.optim.Adam, lr=0.01)
>>> switch_callback = SwitchOptimizer(
>>> new_optimizers=optimizer, epoch_switch=10
>>> )
"""
super().__init__()
# Check if epoch_switch is greater than 1
if epoch_switch < 1:
raise ValueError("epoch_switch must be greater than one.")
# If new_optimizers is not a list, convert it to a list
if not isinstance(new_optimizers, list):
new_optimizers = [new_optimizers]
# Check consistency
check_consistency(epoch_switch, int)
for optimizer in new_optimizers:
check_consistency(optimizer, TorchOptimizer)
# Store the new optimizers and epoch switch
self._new_optimizers = new_optimizers
self._epoch_switch = epoch_switch
[docs]
def on_train_epoch_start(self, trainer, __):
"""
Switch the optimizer at the start of the specified training epoch.
:param lightning.pytorch.Trainer trainer: The trainer object managing
the training process.
:param _: Placeholder argument (not used).
"""
# Check if the current epoch matches the switch epoch
if trainer.current_epoch == self._epoch_switch:
optims = []
# Hook the new optimizers to the model parameters
for idx, optim in enumerate(self._new_optimizers):
optim.hook(trainer.solver._pina_models[idx].parameters())
optims.append(optim)
# Update the solver's optimizers
trainer.solver._pina_optimizers = optims
# Update the trainer's strategy optimizers
trainer.strategy.optimizers = [o.instance for o in optims]