Source code for pygem.bffd

from pygem.cffd import CFFD
import numpy as np
[docs] class BFFD(CFFD): ''' Class that handles the Barycenter Free Form Deformation on the mesh points. :param list n_control_points: number of control points in the x, y, and z direction. Default is [2, 2, 2]. :cvar numpy.ndarray box_length: dimension of the FFD bounding box, in the x, y and z direction (local coordinate system). :cvar numpy.ndarray box_origin: the x, y and z coordinates of the origin of the FFD bounding box. :cvar numpy.ndarray n_control_points: the number of control points in the x, y, and z direction. :cvar numpy.ndarray array_mu_x: collects the displacements (weights) along x, normalized with the box length x. :cvar numpy.ndarray array_mu_y: collects the displacements (weights) along y, normalized with the box length y. :cvar numpy.ndarray array_mu_z: collects the displacements (weights) along z, normalized with the box length z. :cvar callable fun: it defines the F of the constraint F(x)=c. Default is the constant 1 function. :cvar numpy.ndarray fixval: it defines the c of the constraint F(x)=c. Default is 1. :cvar numpy.ndarray mask: a boolean tensor that tells to the class which control points can be moved, and in what direction, to enforce the constraint. The tensor has shape (n_x,n_y,n_z,3), where the last dimension indicates movement on x,y,z respectively. Default is all true. :Example: >>> from pygem import BFFD >>> b = np.random.rand(3) >>> bffd = BFFD(b, [2, 2, 2]) >>> bffd.read_parameters('tests/test_datasets/parameters_test_cffd') >>> original_mesh_points = np.load("tests/test_datasets/test_sphere_cffd.npy") >>> bffd.adjust_control_points(original_mesh_points[:-4]) >>> assert np.isclose(np.linalg.norm(bffd.fun(bffd.ffd(original_mesh_points[:-4])) - b), np.array([0.])) >>> new_mesh_points = bffd.ffd(original_mesh_points) ''' def __init__(self, fixval=None, n_control_points=None, ffd_mask=None): super().__init__(fixval, None, n_control_points, ffd_mask, None) def linfun(x): return np.mean(x.reshape(-1, 3), axis=0) self.fun = linfun self.fixval = fixval self.fun_mask = np.array([[True, False, False], [False, True, False], [False, False, True]])