grape.general_graph.GeneralGraph

class GeneralGraph[source]

Class GeneralGraph for directed graphs (DiGraph).

Constructs a new graph given an input file. A DiGraph stores nodes and edges with optional data or attributes. DiGraphs hold directed edges. Nodes can be arbitrary python objects with optional key/value attributes. Edges are represented as links between nodes with optional key/value attributes.

Initialize a graph with edges, name, or graph attributes.

Parameters
  • incoming_graph_data (input graph (optional, default: None)) – Data to initialize graph. If None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a 2D NumPy array, a SciPy sparse matrix, or a PyGraphviz graph.

  • attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

convert

Examples

>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name="my graph")
>>> e = [(1, 2), (2, 3), (3, 4)]  # list of edges
>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G = nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}
__init__()[source]

Initialize a graph with edges, name, or graph attributes.

Parameters
  • incoming_graph_data (input graph (optional, default: None)) – Data to initialize graph. If None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a 2D NumPy array, a SciPy sparse matrix, or a PyGraphviz graph.

  • attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

convert()

Examples

>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name="my graph")
>>> e = [(1, 2), (2, 3), (3, 4)]  # list of edges
>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G = nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}

Methods

__init__()

Initialize a graph with edges, name, or graph attributes.

add_edge(u_of_edge, v_of_edge, **attr)

Add an edge between u and v.

add_edges_from(ebunch_to_add, **attr)

Add all the edges in ebunch_to_add.

add_node(node_for_adding, **attr)

Add a single node node_for_adding and update node attributes.

add_nodes_from(nodes_for_adding, **attr)

Add multiple nodes.

add_weighted_edges_from(ebunch_to_add[, weight])

Add weighted edges in ebunch_to_add with specified weight attr

adjacency()

Returns an iterator over (node, adjacency dict) tuples for all nodes.

betweenness_centrality_kernel(nodes, …)

Compute betweenness centrality, from shortest path list.

calculate_shortest_path()

Choose the most appropriate way to compute the all-pairs shortest path depending on graph size and density.

clear()

Remove all nodes and edges from the graph.

clear_data(attributes_to_remove)

Delete attributes for all nodes in the graph.

clear_edges()

Remove all edges from the graph without altering nodes.

closeness_centrality_kernel(nodes, …)

Compute betweenness centrality, from shortest path list.

compute_betweenness_centrality()

Betweenness_centrality calculation

compute_closeness_centrality()

Closeness centrality calculation.

compute_degree_centrality()

Degree centrality measure of each node calculation.

compute_efficiency()

Efficiency calculation.

compute_indegree_centrality()

In-degree centrality calculation.

compute_local_efficiency()

Local efficiency calculation.

compute_nodal_efficiency()

Nodal efficiency calculation.

compute_outdegree_centrality()

Outdegree centrality calculation.

compute_service()

Compute service for every node, together with edge splitting.

construct_path_kernel(nodes, predecessor)

Reconstruct source-target paths starting from predecessors matrix, and populate the dictionary of shortest paths.

copy([as_view])

Returns a copy of the graph.

degree_centrality_kernel(nodes, graph_size)

Compute degree centrality.

dijkstra_single_source_shortest_path()

Serial SSSP algorithm based on Dijkstra’s method.

edge_subgraph(edges)

Returns the subgraph induced by the specified edges.

efficiency_kernel(nodes, shortest_path_length)

Compute efficiency, starting from path length attribute.

floyd_warshall_initialization()

Initialization of Floyd Warshall APSP algorithm.

floyd_warshall_kernel(distance, predecessor, …)

Floyd Warshall’s APSP inner iteration.

floyd_warshall_predecessor_and_distance()

Serial Floyd Warshall’s APSP algorithm.

get_edge_data(u, v[, default])

Returns the attribute dictionary associated with edge (u, v).

has_edge(u, v)

Returns True if the edge (u, v) is in the graph.

has_node(n)

Returns True if the graph contains the node n.

has_predecessor(u, v)

Returns True if node u has predecessor v.

has_successor(u, v)

Returns True if node u has successor v.

indegree_centrality_kernel(nodes, graph_size)

Compute in-degree centrality.

is_directed()

Returns True if graph is directed, False otherwise.

is_multigraph()

Returns True if graph is a multigraph, False otherwise.

load(filename)

Load input file.

local_efficiency_kernel(nodes, nodal_efficiency)

Compute local efficiency, starting from nodal efficiency attribute.

nbunch_iter([nbunch])

Returns an iterator over nodes contained in nbunch that are also in the graph.

neighbors(n)

Returns an iterator over successor nodes of n.

nodal_efficiency_kernel(nodes, efficiency, …)

Compute nodal efficiency, starting from efficiency attribute.

number_of_edges([u, v])

Returns the number of edges between two nodes.

number_of_nodes()

Returns the number of nodes in the graph.

order()

Returns the number of nodes in the graph.

outdegree_centrality_kernel(nodes, graph_size)

Compute out-degree centrality.

predecessors(n)

Returns an iterator over predecessor nodes of n.

remove_edge(u, v)

Remove the edge between u and v.

remove_edges_from(ebunch)

Remove all edges specified in ebunch.

remove_node(n)

Remove node n.

remove_nodes_from(nodes)

Remove multiple nodes.

reverse([copy])

Returns the reverse of the graph.

shortest_path_list_kernel(nodes, shortest_path)

Collect the shortest paths that contain at least two nodes.

size([weight])

Returns the number of edges or total of all edge weights.

subgraph(nodes)

Returns a SubGraph view of the subgraph induced on nodes.

successors(n)

Returns an iterator over successor nodes of n.

to_directed([as_view])

Returns a directed representation of the graph.

to_directed_class()

Returns the class to use for empty directed copies.

to_undirected([reciprocal, as_view])

Returns an undirected representation of the digraph.

to_undirected_class()

Returns the class to use for empty undirected copies.

update([edges, nodes])

Update the graph using nodes/edges/graphs as input.

Attributes

adj

Graph adjacency object holding the neighbors of each node.

GeneralGraph.area

betweenness_centrality

Betweenness centrality of the graph.

closeness_centrality

Closeness centrality of the graph.

degree

A DegreeView for the Graph as G.degree or G.degree().

degree_centrality

Degree centrality of the graph.

description

description attribute for every node.

edges

An OutEdgeView of the DiGraph as G.edges or G.edges().

efficiency

Efficiency of the graph.

GeneralGraph.father_condition

final_status

final_status attribute for switches.

global_efficiency

Average global efficiency of the whole graph.

in_degree

An InDegreeView for (node, in_degree) or in_degree for single node.

in_edges

An InEdgeView of the Graph as G.in_edges or G.in_edges().

indegree_centrality

In-degree centrality of the graph.

init_status

init_status attribute for switches.

initial_service

initial_service attribute for every node.

local_efficiency

Local efficiency of the graph.

mark

mark attribute for every node.

mark_status

mark_status attribute for every node.

name

String identifier of the graph.

nodal_efficiency

Nodal efficiency of the graph.

nodes

A NodeView of the Graph as G.nodes or G.nodes().

out_degree

An OutDegreeView for (node, out_degree)

out_edges

An OutEdgeView of the DiGraph as G.edges or G.edges().

outdegree_centrality

Out-degree centrality of the graph.

GeneralGraph.perturbation_resistant

pred

Graph adjacency object holding the predecessors of each node.

service

Computed service.

shortest_path

Shortest existing paths between all node pairs.

shortest_path_length

Shortest path length.

sources

list of graph sources.

GeneralGraph.status_area

succ

Graph adjacency object holding the successors of each node.

switches

list of graph switches.

type

type attribute for every node.

users

list of graph users.

weight

weight attribute for every edge.