Source code for ezyrb.reducedordermodel

"""Module for the Reduced Order Modeling."""

import math
import copy
import pickle
import numpy as np
from scipy.spatial import Delaunay
from sklearn.model_selection import KFold
from .database import Database
from .reduction import Reduction
from .approximation import Approximation


from abc import ABC, abstractmethod

class ReducedOrderModelInterface(ABC):

    def _execute_plugins(self, when):
        """
        Execute the plugins at the specified time, if the plugin has the
        specified method.

        :param str when: the time when the plugins have to be executed.
            The available times are:
                - 'fit_preprocessing'
                - 'fit_before_reduction'
                - 'fit_after_reduction'
                - 'fit_before_approximation'
                - 'fit_after_approximation'
                - 'fit_postprocessing'
                - 'predict_preprocessing'
                - 'predict_postprocessing'
        """
        for plugin in self.plugins:
            if hasattr(plugin, when):
                getattr(plugin, when)(self)


[docs] class ReducedOrderModel(ReducedOrderModelInterface): """ Reduced Order Model class. This class performs the actual reduced order model using the selected methods for approximation and reduction. :param ezyrb.Database database: the database to use for training the reduced order model. :param ezyrb.Reduction reduction: the reduction method to use in reduced order model. :param ezyrb.Approximation approximation: the approximation method to use in reduced order model. :param list plugins: list of plugins to use in the reduced order model. :cvar ezyrb.Database database: the database used for training the reduced order model. :cvar ezyrb.Reduction reduction: the reduction method used in reduced order model. :cvar ezyrb.Approximation approximation: the approximation method used in reduced order model. :cvar list plugins: list of plugins used in the reduced order model. :Example: >>> from ezyrb import ReducedOrderModel as ROM >>> from ezyrb import POD, RBF, Database >>> pod = POD() >>> rbf = RBF() >>> # param, snapshots and new_param are assumed to be declared >>> db = Database(param, snapshots) >>> rom = ROM(db, pod, rbf).fit() >>> rom.predict(new_param) """
[docs] def __init__(self, database, reduction, approximation, plugins=None): self.database = database self.reduction = reduction self.approximation = approximation if plugins is None: plugins = [] self.plugins = plugins self.clean()
[docs] def clean(self): self.train_full_database = None self.train_reduced_database = None self.predict_full_database = None self.predict_reduced_database = None self.test_full_database = None self.test_reduced_database = None self.validation_full_database = None self.validation_reduced_database = None
@property def database(self): return self._database @database.setter def database(self, value): if not isinstance(value, (Database, dict)): raise TypeError( "The database has to be an instance of the Database class, or a dictionary of Database.") self._database = value @database.deleter def database(self): del self._database @property def reduction(self): return self._reduction @reduction.setter def reduction(self, value): if not isinstance(value, Reduction): raise TypeError( "The reduction has to be an instance of the Reduction class, or a dict of Reduction.") self._reduction = value @reduction.deleter def reduction(self): del self._reduction @property def approximation(self): return self._approximation @approximation.setter def approximation(self, value): if not isinstance(value, Approximation): raise TypeError( "The approximation has to be an instance of the Approximation class, or a dict of Approximation.") self._approximation = value @approximation.deleter def approximation(self): del self._approximation @property def n_database(self): value_, class_ = self.database, Database return len(value_) if not isinstance(value_, class_) else 1 @property def n_reduction(self): value_, class_ = self.reduction, Reduction return len(value_) if not isinstance(value_, class_) else 1 @property def n_approximation(self): value_, class_ = self.approximation, Approximation return len(value_) if isinstance(value_, class_) else 1
[docs] def fit_reduction(self): # for k, rom_ in self.roms.items(): # rom_['reduction'].fit(rom_['database'].snapshots_matrix.T) if not hasattr(self, 'train_full_database'): raise RuntimeError self.reduction.fit(self.train_full_database.snapshots_matrix.T)
[docs] def _reduce_database(self, db): return Database( db.parameters_matrix, self.reduction.transform(db.snapshots_matrix.T).T )
[docs] def fit_approximation(self): if not hasattr(self, 'train_reduced_database'): raise RuntimeError self.approximation.fit(self.train_reduced_database.parameters_matrix, self.train_reduced_database.snapshots_matrix)
# if self.n_database == 1 and self.n_reduction == 1: # self.train_full_database = self.database # self.reduction.fit(self.database.snapshots_matrix.T) # elif self.n_database == 1 and self.n_reduction > 1: # self.train_full_database = self.database # for reduction in self.reduction: # reduction.fit(self.database.snapshots_matrix.T) # elif self.n_database > 1 and self.n_reduction == 1: # self.train_full_database = self.database # self.reduction = [ # (k, copy.deepcopy(self.reduction)) # for k in self.train_full_database # ] # print(self.reduction) # for reduction, database in zip(self.reduction, self.train_full_database): # self.reduction[reduction].fit(self.train_full_database[database].snapshots_matrix.T) # elif self.n_database > 1 and self.n_reduction > 1: # raise NotImplementedError # else: # raise RuntimeError
[docs] def fit(self): r""" Calculate reduced space """ self._execute_plugins('fit_preprocessing') if self.train_full_database is None: self.train_full_database = copy.deepcopy(self.database) self._execute_plugins('fit_before_reduction') self.fit_reduction() self.train_reduced_database = self._reduce_database( self.train_full_database) self._execute_plugins('fit_after_reduction') ## FULL-ORDER PREPROCESSING here #for plugin in self.plugins: # plugin.fom_preprocessing(self) #self.shifted_database = self._full_database #self.reduction.fit(self._full_database.snapshots_matrix.T) #reduced_snapshots = self.reduction.transform( # self._full_database.snapshots_matrix.T).T self._execute_plugins('fit_before_approximation') self.fit_approximation() self._execute_plugins('fit_after_approximation') self._execute_plugins('fit_postprocessing') return self
[docs] def predict(self, parameters): """ Calculate predicted solution for given parameters. If `parameters` is a 2D array, the function returns a 2D array of predicted solutions. If `parameters` is a Database, the function returns the database of predicted solutions. :return: the database containing all the predicted solution (with corresponding parameters). :rtype: Database """ self._execute_plugins('predict_preprocessing') if isinstance(parameters, Database): self.predict_reduced_database = parameters elif isinstance(parameters, (list, np.ndarray, tuple)): parameters = np.atleast_2d(parameters) self.predict_reduced_database = Database( parameters=parameters, snapshots=[None] * len(parameters) ) else: raise TypeError self._execute_plugins('predict_before_approximation') self.predict_reduced_database = Database( self.predict_reduced_database.parameters_matrix, self.approximation.predict( self.predict_reduced_database.parameters_matrix).reshape( self.predict_reduced_database.parameters_matrix.shape[0], -1 ) ) self._execute_plugins('predict_after_approximation') #mu = np.atleast_2d(mu) #for plugin in self.plugins: # if plugin.target == 'parameters': # mu = plugin.scaler.transform(mu) #self._reduced_database = Database( # mu, np.atleast_2d(self.approximation.predict(mu))) self._execute_plugins('predict_before_expansion') self.predicted_full_database = Database( self.predict_reduced_database.parameters_matrix, self.reduction.inverse_transform( self.predict_reduced_database.snapshots_matrix.T).T ) self._execute_plugins('predict_after_expansion') self._execute_plugins('predict_postprocessing') if isinstance(parameters, Database): return self.predicted_full_database #predict_full_database else: return self.predicted_full_database.snapshots_matrix #predict_full_database
[docs] def save(self, fname, save_db=True, save_reduction=True, save_approx=True): """ Save the object to `fname` using the pickle module. :param str fname: the name of file where the reduced order model will be saved. :param bool save_db: Flag to select if the `Database` will be saved. :param bool save_reduction: Flag to select if the `Reduction` will be saved. :param bool save_approx: Flag to select if the `Approximation` will be saved. Example: >>> from ezyrb import ReducedOrderModel as ROM >>> rom = ROM(...) # Construct here the rom >>> rom.fit() >>> rom.save('ezyrb.rom') """ rom_to_store = copy.copy(self) if not save_db: del rom_to_store.database if not save_reduction: del rom_to_store.reduction if not save_approx: del rom_to_store.approximation with open(fname, 'wb') as output: pickle.dump(rom_to_store, output, pickle.HIGHEST_PROTOCOL)
[docs] @staticmethod def load(fname): """ Load the object from `fname` using the pickle module. :return: The `ReducedOrderModel` loaded Example: >>> from ezyrb import ReducedOrderModel as ROM >>> rom = ROM.load('ezyrb.rom') >>> rom.predict(new_param) """ with open(fname, 'rb') as output: rom = pickle.load(output) return rom
[docs] def test_error(self, test, norm=np.linalg.norm): """ Compute the mean norm of the relative error vectors of predicted test snapshots. :param database.Database test: the input test database. :param function norm: the function used to assign at the vector of errors a float number. It has to take as input a 'numpy.ndarray' and returns a float. Default value is the L2 norm. :return: the mean L2 norm of the relative errors of the estimated test snapshots. :rtype: numpy.ndarray """ predicted_test = self.predict(test.parameters_matrix) return np.mean( norm(predicted_test - test.snapshots_matrix, axis=1) / norm(test.snapshots_matrix, axis=1))
[docs] def kfold_cv_error(self, n_splits, *args, norm=np.linalg.norm, **kwargs): r""" Split the database into k consecutive folds (no shuffling by default). Each fold is used once as a validation while the k - 1 remaining folds form the training set. If `n_splits` is equal to the number of snapshots this function is the same as `loo_error` but the error here is relative and not absolute. :param int n_splits: number of folds. Must be at least 2. :param function norm: function to apply to compute the relative error between the true snapshot and the predicted one. Default value is the L2 norm. :param \*args: additional parameters to pass to the `fit` method. :param \**kwargs: additional parameters to pass to the `fit` method. :return: the vector containing the errors corresponding to each fold. :rtype: numpy.ndarray """ error = [] kf = KFold(n_splits=n_splits) for train_index, test_index in kf.split(self.database): new_db = self.database[train_index] rom = type(self)(new_db, copy.deepcopy(self.reduction), copy.deepcopy(self.approximation)).fit( *args, **kwargs) error.append(rom.test_error(self.database[test_index], norm)) return np.array(error)
[docs] def loo_error(self, *args, norm=np.linalg.norm, **kwargs): r""" Estimate the approximation error using *leave-one-out* strategy. The main idea is to create several reduced spaces by combining all the snapshots except one. The error vector is computed as the difference between the removed snapshot and the projection onto the properly reduced space. The procedure repeats for each snapshot in the database. The `norm` is applied on each vector of error to obtained a float number. :param function norm: the function used to assign at each vector of error a float number. It has to take as input a 'numpy.ndarray` and returns a float. Default value is the L2 norm. :param \*args: additional parameters to pass to the `fit` method. :param \**kwargs: additional parameters to pass to the `fit` method. :return: the vector that contains the errors estimated for all parametric points. :rtype: numpy.ndarray """ error = np.zeros(len(self.database)) db_range = list(range(len(self.database))) for j in db_range: indeces = np.array([True] * len(self.database)) indeces[j] = False new_db = self.database[indeces] test_db = self.database[~indeces] rom = type(self)(new_db, copy.deepcopy(self.reduction), copy.deepcopy(self.approximation)).fit() error[j] = rom.test_error(test_db) return error
[docs] def optimal_mu(self, error=None, k=1): """ Return the parametric points where new high-fidelity solutions have to be computed in order to globally reduce the estimated error. These points are the barycentric center of the region (simplex) with higher error. :param numpy.ndarray error: the estimated error evaluated for each snapshot; if error array is not passed, it is computed using :func:`loo_error` with the default function. Default value is None. :param int k: the number of optimal points to return. Default value is 1. :return: the optimal points :rtype: numpy.ndarray """ if error is None: error = self.loo_error() mu = self.database.parameters_matrix tria = Delaunay(mu) error_on_simplex = np.array([ np.sum(error[smpx]) * self._simplex_volume(mu[smpx]) for smpx in tria.simplices ]) barycentric_point = [] for index in np.argpartition(error_on_simplex, -k)[-k:]: worst_tria_pts = mu[tria.simplices[index]] worst_tria_err = error[tria.simplices[index]] barycentric_point.append( np.average(worst_tria_pts, axis=0, weights=worst_tria_err)) return np.asarray(barycentric_point)
[docs] def _simplex_volume(self, vertices): """ Method implementing the computation of the volume of a N dimensional simplex. Source from: `wikipedia.org/wiki/Simplex <https://en.wikipedia.org/wiki/Simplex>`_. :param numpy.ndarray simplex_vertices: Nx3 array containing the parameter values representing the vertices of a simplex. N is the dimensionality of the parameters. :return: N dimensional volume of the simplex. :rtype: float """ distance = np.transpose([vertices[0] - vi for vi in vertices[1:]]) return np.abs( np.linalg.det(distance) / math.factorial(vertices.shape[1]))
class MultiReducedOrderModel(ReducedOrderModelInterface): """ Multiple Reduced Order Model class. This class performs the actual reduced order model using the selected methods for approximation and reduction. :param ezyrb.Database database: the database to use for training the reduced order model. :param ezyrb.Reduction reduction: the reduction method to use in reduced order model. :param ezyrb.Approximation approximation: the approximation method to use in reduced order model. :param list plugins: list of plugins to use in the reduced order model. :cvar ezyrb.Database database: the database used for training the reduced order model. :cvar ezyrb.Reduction reduction: the reduction method used in reduced order model. :cvar ezyrb.Approximation approximation: the approximation method used in reduced order model. :cvar list plugins: list of plugins used in the reduced order model. :Example: >>> from ezyrb import ReducedOrderModel as ROM >>> from ezyrb import POD, RBF, Database >>> pod = POD() >>> rbf = RBF() >>> # param, snapshots and new_param are assumed to be declared >>> db = Database(param, snapshots) >>> rom = ROM(db, pod, rbf).fit() >>> rom.predict(new_param) """ def __init__(self, *args, plugins=None, rom_plugin=None): if len(args) == 3: self.database = args[0] self.reduction = args[1] self.approximation = args[2] from itertools import product element_keys = product( self.database.keys(), self.reduction.keys(), self.approximation.keys() ) self.roms = { tuple(key): ReducedOrderModel( copy.deepcopy(self.database[key[0]]), copy.deepcopy(self.reduction[key[1]]), copy.deepcopy(self.approximation[key[2]]) ) for key in element_keys } elif (len(args) == 2 and isinstance(args[0], Database) and isinstance(args[1], dict)): self.database = args[0] self.roms = args[1] elif len(args) == 1 and isinstance(args[0], dict): self.roms = args[0] roms_keys = list(self.roms.keys()) self.database = {roms_keys[i]: self.roms[roms_keys[i]].database for i in range(len(self.roms))} if plugins is None: plugins = [] self.plugins = plugins if rom_plugin is not None: for rom_ in self.roms.values(): rom_.plugins.append(rom_plugin) @property def database(self): return self._database @database.setter def database(self, value): if not isinstance(value, (Database, dict)): raise TypeError( "The database has to be an instance of the Database class, or a dictionary of Database.") if isinstance(value, Database): self._database = {0: value} else: self._database = value @database.deleter def database(self): del self._database @property def reduction(self): return self._reduction @reduction.setter def reduction(self, value): if not isinstance(value, (Reduction, dict)): raise TypeError( "The reduction has to be an instance of the Reduction class, or a dict of Reduction.") if isinstance(value, Reduction): self._reduction = {0: value} else: self._reduction = value @reduction.deleter def reduction(self): del self._reduction @property def approximation(self): return self._approximation @approximation.setter def approximation(self, value): if not isinstance(value, (Approximation, dict)): raise TypeError( "The approximation has to be an instance of the Approximation class, or a dict of Approximation.") if isinstance(value, Approximation): self._approximation = {0: value} else: self._approximation = value @property def n_database(self): value_, class_ = self.database, Database return len(value_) if not isinstance(value_, class_) else 1 @property def n_reduction(self): value_, class_ = self.reduction, Reduction return len(value_) if not isinstance(value_, class_) else 1 @property def n_approximation(self): value_, class_ = self.approximation, Approximation return len(value_) if isinstance(value_, class_) else 1 def fit(self): r""" Calculate reduced space """ self._execute_plugins('fit_preprocessing') for rom_ in self.roms.values(): if rom_.train_reduced_database==None: rom_.fit() self._execute_plugins('fit_postprocessing') return self def predict(self, parameters=None): """ Calculate predicted solution for given mu If gaussians is True, the standard aggregation technique (gaussians) is used, otherwise the ANNs are used. :return: the database containing all the predicted solution (with corresponding parameters). :rtype: Database """ self._execute_plugins('predict_preprocessing') # convert parameters from Database to numpy array (if database) if isinstance(parameters, Database): self.predict_reduced_database = parameters elif isinstance(parameters, (list, np.ndarray, tuple)): print(parameters) parameters = np.atleast_2d(parameters) self.predict_reduced_database = Database(parameters, [None]*len(parameters)) elif parameters is None: if self.predict_full_database is None: raise RuntimeError else: raise TypeError self.multi_predict_database = {} for k, rom_ in self.roms.items(): self.multi_predict_database[k] = rom_.predict(self.predict_reduced_database) print(self.multi_predict_database) self._execute_plugins('predict_postprocessing') if isinstance(parameters, Database): return self.multi_predict_database else: return { k:db.snapshots_matrix for k, db in self.multi_predict_database.items() } def save(self, fname, save_db=True, save_reduction=True, save_approx=True): """ Save the object to `fname` using the pickle module. :param str fname: the name of file where the reduced order model will be saved. :param bool save_db: Flag to select if the `Database` will be saved. :param bool save_reduction: Flag to select if the `Reduction` will be saved. :param bool save_approx: Flag to select if the `Approximation` will be saved. Example: >>> from ezyrb import ReducedOrderModel as ROM >>> rom = ROM(...) # Construct here the rom >>> rom.fit() >>> rom.save('ezyrb.rom') """ rom_to_store = copy.copy(self) if not save_db: del rom_to_store.database if not save_reduction: del rom_to_store.reduction if not save_approx: del rom_to_store.approximation with open(fname, 'wb') as output: pickle.dump(rom_to_store, output, pickle.HIGHEST_PROTOCOL) @staticmethod def load(fname): """ Load the object from `fname` using the pickle module. :return: The `ReducedOrderModel` loaded Example: >>> from ezyrb import ReducedOrderModel as ROM >>> rom = ROM.load('ezyrb.rom') >>> rom.predict(new_param) """ with open(fname, 'rb') as output: rom = pickle.load(output) return rom def test_error(self, test, norm=np.linalg.norm, relative=True): """ Compute the mean norm of the relative error vectors of predicted test snapshots. :param database.Database test: the input test database. :param function norm: the function used to assign at the vector of errors a float number. It has to take as input a 'numpy.ndarray' and returns a float. Default value is the L2 norm. :param relative: True if the error computed is relative. Default is True. :return: the mean L2 norm of the relative errors of the estimated test snapshots. :rtype: numpy.ndarray """ predicted_test = self.predict(test.parameters_matrix) if relative: return np.mean( norm(predicted_test.snapshots_matrix - test.snapshots_matrix, axis=1) / norm(test.snapshots_matrix, axis=1)) else: return np.mean( norm(predicted_test.snapshots_matrix - test.snapshots_matrix, axis=1)) def kfold_cv_error(self, n_splits, *args, norm=np.linalg.norm, relative=True, **kwargs): r""" Split the database into k consecutive folds (no shuffling by default). Each fold is used once as a validation while the k - 1 remaining folds form the training set. If `n_splits` is equal to the number of snapshots this function is the same as `loo_error` but the error here is relative and not absolute. :param int n_splits: number of folds. Must be at least 2. :param function norm: function to apply to compute the relative error between the true snapshot and the predicted one. Default value is the L2 norm. :param relative: True if the error computed is relative. Default is True. :param \*args: additional parameters to pass to the `fit` method. :param \**kwargs: additional parameters to pass to the `fit` method. :return: the vector containing the errors corresponding to each fold. :rtype: numpy.ndarray """ error = [] kf = KFold(n_splits=n_splits) for train_index, test_index in kf.split(self.database): new_db = self.database[train_index] rom = type(self)(new_db, copy.deepcopy(self.reduction), copy.deepcopy(self.approximation)).fit( *args, **kwargs) error.append(rom.test_error(self.database[test_index], norm, relative)) return np.array(error) def loo_error(self, *args, norm=np.linalg.norm, **kwargs): r""" Estimate the approximation error using *leave-one-out* strategy. The main idea is to create several reduced spaces by combining all the snapshots except one. The error vector is computed as the difference between the removed snapshot and the projection onto the properly reduced space. The procedure repeats for each snapshot in the database. The `norm` is applied on each vector of error to obtained a float number. :param function norm: the function used to assign at each vector of error a float number. It has to take as input a 'numpy.ndarray` and returns a float. Default value is the L2 norm. :param \*args: additional parameters to pass to the `fit` method. :param \**kwargs: additional parameters to pass to the `fit` method. :return: the vector that contains the errors estimated for all parametric points. :rtype: numpy.ndarray """ error = np.zeros(len(self.database)) db_range = list(range(len(self.database))) for j in db_range: indeces = np.array([True] * len(self.database)) indeces[j] = False new_db = self.database[indeces] test_db = self.database[~indeces] rom = type(self)(new_db, copy.deepcopy(self.reduction), copy.deepcopy(self.approximation)).fit() error[j] = rom.test_error(test_db) return error def optimal_mu(self, error=None, k=1): """ Return the parametric points where new high-fidelity solutions have to be computed in order to globally reduce the estimated error. These points are the barycentric center of the region (simplex) with higher error. :param numpy.ndarray error: the estimated error evaluated for each snapshot; if error array is not passed, it is computed using :func:`loo_error` with the default function. Default value is None. :param int k: the number of optimal points to return. Default value is 1. :return: the optimal points :rtype: numpy.ndarray """ if error is None: error = self.loo_error() mu = self.database.parameters_matrix tria = Delaunay(mu) error_on_simplex = np.array([ np.sum(error[smpx]) * self._simplex_volume(mu[smpx]) for smpx in tria.simplices ]) barycentric_point = [] for index in np.argpartition(error_on_simplex, -k)[-k:]: worst_tria_pts = mu[tria.simplices[index]] worst_tria_err = error[tria.simplices[index]] barycentric_point.append( np.average(worst_tria_pts, axis=0, weights=worst_tria_err)) return np.asarray(barycentric_point) def _simplex_volume(self, vertices): """ Method implementing the computation of the volume of a N dimensional simplex. Source from: `wikipedia.org/wiki/Simplex <https://en.wikipedia.org/wiki/Simplex>`_. :param numpy.ndarray simplex_vertices: Nx3 array containing the parameter values representing the vertices of a simplex. N is the dimensionality of the parameters. :return: N dimensional volume of the simplex. :rtype: float """ distance = np.transpose([vertices[0] - vi for vi in vertices[1:]]) return np.abs( np.linalg.det(distance) / math.factorial(vertices.shape[1])) def reconstruction_error(self, db=None, relative=True, eps=1e-12): """ Calculate the reconstruction error between the original snapshots and the ones reconstructed by the ROM. :param database.Database db: the database to use to compute the error. If None, the error is computed on the training database. Default is None. :param bool relative: True if the error computed is relative. Default is True. :param float eps: small number to avoid division by zero in relative error computation. Default is 1e-12. :return: the vector containing the reconstruction errors. Esempio: >>> from ezyrb import ReducedOrderModel as ROM >>> from ezyrb import POD, RBF, Database >>> db = Database(param, snapshots) # param and snapshots are assumed to be declared >>> db_train = db[:10] # training database >>> db_test = db[10:] # test database >>> pod = POD() >>> rbf = RBF() >>> rom = ROM(db_train, pod, rbf) >>> rom.fit() >>> err_train_reduct = rom.reconstruction_error(relative=True) >>> err_test_reduct = rom.reconstruction_error(db_test, relative=True) """ errs = [] if db is None: db = self.database snap = db.snapshots_matrix snap_red = self.reduction.transform(snap.T) snap_full = self.reduction.inverse_transform(snap_red).T E = snap - snap_full if relative: num = np.linalg.norm(E, axis=1) den = np.linalg.norm(snap, axis=1) + eps err = float(np.mean(num/den)) else: err = float(np.mean(np.linalg.norm(E, axis=1))) errs.append(err) return np.array(errs) def approximation_error(self, db=None, relative=True, eps=1e-12): """ Calculate the approximation error between the true modal coefficients and the approximated ones. :param database.Database db: the database to use to compute the error. If None, the error is computed on the training database. Default is None. :param bool relative: True if the error computed is relative. Default is True. :param float eps: small number to avoid division by zero in relative error computation. Default is 1e-12. :return: the vector containing the approximation errors. Esempio: >>> from ezyrb import ReducedOrderModel as ROM >>> from ezyrb import POD, RBF, Database >>> db = Database(param, snapshots) # param and snapshots are assumed to be declared >>> db_train = db[:10] # training database >>> db_test = db[10:] # test database >>> pod = POD() >>> rbf = RBF() >>> rom = ROM(db_train, pod, rbf) >>> rom.fit() >>> err_train_approx = rom.approximation_error(relative=True) >>> err_test_approx = rom.approximation_error(db_test, relative=True) """ errs = [] if db is None: db = self.database snap = db.snapshots_matrix params_true = self.reduction.transform(snap.T).T params = db.parameters_matrix params_approx = self.approximation.predict(params) E = params_true - params_approx if relative: num = np.linalg.norm(E, axis=1) den = np.linalg.norm(params_true, axis=1) + eps err = float(np.mean(num/den)) else: err = float(np.mean(np.linalg.norm(E, axis=1))) errs.append(err) return np.array(errs)