Source code for ezyrb.approximation.ann

"""
Module for Artificial Neural Network (ANN) Prediction.
"""

import torch
import torch.nn as nn
import numpy as np
from .approximation import Approximation


[docs] class ANN(Approximation): """ Feed-Forward Artifical Neural Network (ANN). :param list layers: ordered list with the number of neurons of each hidden layer. :param torch.nn.modules.activation function: activation function at each layer. A single activation function can be passed or a list of them of length equal to the number of hidden layers. :param list stop_training: list with the maximum number of training iterations (int) and/or the desired tolerance on the training loss (float). :param torch.nn.Module loss: loss definition (Mean Squared if not given). :param torch.optim optimizer: the torch class implementing optimizer. Default value is `Adam` optimizer. :param float lr: the learning rate. Default is 0.001. :param float l2_regularization: the L2 regularization coefficient, it corresponds to the "weight_decay". Default is 0 (no regularization). :param int frequency_print: the frequency in terms of epochs of the print during the training of the network. :param boolean last_identity: Flag to specify if the last activation function is the identity function. In the case the user provides the entire list of activation functions, this attribute is ignored. Default value is True. :Example: >>> import ezyrb >>> import numpy as np >>> import torch.nn as nn >>> x = np.random.uniform(-1, 1, size =(4, 2)) >>> y = np.array([np.sin(x[:, 0]), np.cos(x[:, 1]**3)]).T >>> ann = ezyrb.ANN([10, 5], nn.Tanh(), [20000,1e-5]) >>> ann.fit(x, y) >>> y_pred = ann.predict(x) >>> print(y) >>> print(y_pred) >>> print(len(ann.loss_trend)) >>> print(ann.loss_trend[-1]) """
[docs] def __init__(self, layers, function, stop_training, loss=None, optimizer=torch.optim.Adam, lr=0.001, l2_regularization=0, frequency_print=10, last_identity=True): if loss is None: loss = torch.nn.MSELoss() if not isinstance(function, list): # Single activation function passed nl = len(layers) if last_identity else len(layers)+1 function = [function] * nl if not isinstance(stop_training, list): stop_training = [stop_training] if torch.cuda.is_available(): # Check if GPU is available print("Using cuda device") torch.cuda.empty_cache() self.use_cuda = True else: self.use_cuda = False self.layers = layers self.function = function self.loss = loss self.stop_training = stop_training self.loss_trend = [] self.model = None self.optimizer = optimizer self.frequency_print = frequency_print self.lr = lr self.l2_regularization = l2_regularization
[docs] def _convert_numpy_to_torch(self, array): """ Converting data type. :param numpy.ndarray array: input array. :return: the tensorial counter-part of the input array. :rtype: torch.Tensor. """ return torch.from_numpy(array).float()
[docs] def _convert_torch_to_numpy(self, tensor): """ Converting data type. :param torch.Tensor tensor: input tensor. :return: the vectorial counter-part of the input tensor. :rtype: numpy.ndarray. """ return tensor.detach().numpy()
[docs] @staticmethod def _list_to_sequential(layers, functions): layers_torch = [] inout_layers = [[layers[i], layers[i+1]] for i in range(len(layers)-1)] while True: if inout_layers: inp_d, out_d = inout_layers.pop(0) layers_torch.append(nn.Linear(inp_d, out_d)) if functions: layers_torch.append(functions.pop(0)) if not functions and not inout_layers: break return nn.Sequential(*layers_torch)
[docs] def _build_model(self, points, values): """ Build the torch model. Considering the number of neurons per layer (self.layers), a feed-forward NN is defined: - activation function from layer i>=0 to layer i+1: self.function[i]; activation function at the output layer: Identity (by default). :param numpy.ndarray points: the coordinates of the given (training) points. :param numpy.ndarray values: the (training) values in the points. """ layers = self.layers.copy() layers.insert(0, points.shape[1]) layers.append(values.shape[1]) if self.model is None: self.model = self._list_to_sequential(layers, self.function) else: self.model = self.model
[docs] def fit(self, points, values): """ Build the ANN given 'points' and 'values' and perform training. Training procedure information: - optimizer: Adam's method with default parameters (see, e.g., https://pytorch.org/docs/stable/optim.html); - loss: self.loss (if none, the Mean Squared Loss is set by default). - stopping criterion: the fulfillment of the requested tolerance on the training loss compatibly with the prescribed budget of training iterations (if type(self.stop_training) is list); if type(self.stop_training) is int or type(self.stop_training) is float, only the number of maximum iterations or the accuracy level on the training loss is considered as the stopping rule, respectively. :param numpy.ndarray points: the coordinates of the given (training) points. :param numpy.ndarray values: the (training) values in the points. """ self._build_model(points, values) if self.use_cuda: self.model = self.model.cuda() points = self._convert_numpy_to_torch(points).cuda() values = self._convert_numpy_to_torch(values).cuda() else: points = self._convert_numpy_to_torch(points) values = self._convert_numpy_to_torch(values) optimizer = self.optimizer( self.model.parameters(), lr=self.lr, weight_decay=self.l2_regularization) n_epoch = 1 flag = True while flag: y_pred = self.model(points) loss = self.loss(y_pred, values) optimizer.zero_grad() loss.backward() optimizer.step() scalar_loss = loss.item() self.loss_trend.append(scalar_loss) for criteria in self.stop_training: if isinstance(criteria, int): # stop criteria is an integer if n_epoch == criteria: flag = False elif isinstance(criteria, float): # stop criteria is float if scalar_loss < criteria: flag = False if (flag is False or n_epoch == 1 or n_epoch % self.frequency_print == 0): print(f'[epoch {n_epoch:6d}]\t{scalar_loss:e}') n_epoch += 1 return optimizer
[docs] def predict(self, new_point): """ Evaluate the ANN at given 'new_points'. :param array_like new_points: the coordinates of the given points. :return: the predicted values via the ANN. :rtype: numpy.ndarray """ if self.use_cuda : new_point = self._convert_numpy_to_torch(new_point).cuda() new_point = self._convert_numpy_to_torch( np.array(new_point.cpu())).cuda() y_new = self._convert_torch_to_numpy(self.model(new_point).cpu()) else: new_point = self._convert_numpy_to_torch(np.array(new_point)) y_new = self._convert_torch_to_numpy(self.model(new_point)) return y_new