04 Inverse problems

Active Subspaces can be applied to increase the efficiency of Hamiltonian Monte Carlo methods (HMC) when sampling from the posterior distribution of the inputs in the Bayesian framework Constantine, Paul G. active subspaces: emerging ideas for dimension reduction in parameter studies.

Let us consider the following inverse problem: supposing that the inputs $\mathbf{x}$ are distributed according to a multivariate Gaussian distribution in $\mathcal{X}\subset\mathbb{R}^{m}$ we can compute the posterior distribution of $\mathbf{x}$ with the knowledge of a dataset $(\mathbf{x},\mathbf{y})$ where $\mathbf{y}$ are the targets obtained after the simulation $m(\mathbf{x})$ with the addition of a noise term

$$\large \mathbf{y}\approx f(\mathbf{x})= m(\mathbf{x})+\mathcal{N}(0, \sigma I_{d}), \qquad m:\mathcal{X}\subset\mathbb{R}^{m}\rightarrow\mathbb{R} $$$$\large \mathbf{x}\sim\mathcal{N}(0, I_{d}),\qquad f\sim\mathcal{N}(m(\mathbf{x}), \sigma I_{d}) $$

Sampling from the posterior distribution of the latent variables $\mathbf{x}$ with HMC is costly due to the evaluations of the model $m$

$$\large p_{\text{posterior}}(\mathbf{x}|\mathbf{f}) = \frac{p_{\text{likelihood}}(\mathbf{f}|\mathbf{x})p_{\text{prior}}(\mathbf{x})}{p_{\text{marginal}}(\mathbf{f})}\propto p_{\text{likelihood}}(\mathbf{f}|\mathbf{x})p_{\text{prior}}(\mathbf{x}) $$

In order to avoid this we can approximate the model with a surrogate obtained employing the existence of an Active Subspace $g:\mathcal{X}_{\text{active}}\subset\mathbb{R}^{r}\rightarrow\mathbb{R}$ such that $g(\mathbf{s})\approx m(\mathbf{x})=m(W_{1}s+W_{2}t)$

$$\large p_{\text{posterior}}(\mathbf{s}|\mathbf{g}) = \frac{p_{\text{likelihood}}(\mathbf{g}|\mathbf{s})p_{\text{prior}}(\mathbf{s})}{p_{\text{marginal}}(\mathbf{g})}\propto p_{\text{likelihood}}(\mathbf{g}|\mathbf{s})p_{\text{prior}}(\mathbf{s}), \qquad p_{prior}(\mathbf{t})=p_{posterior}(\mathbf{t}) $$

It is important to observe that in this way the inactive variable $\mathbf{z}$ has a multivariate Gaussian distribution and it is independent from the random variable $f$.

We use the library Pyro for probabilistic programming and GPy for Gaussian process regression.

Next we define the Likelihood (model) and the surrogate model (surrogate_model) built with active subspaces.

Use No U-Turn Sampler (NUTS) Hamiltonian Monte Carlo to sample from the posterior of the original model.

Show the probablity posterior distribution of each inputs' component (input_dim).

Posterior samples of the active variable from original model

Use No U-Turn Sampler (NUTS) Hamiltonian Monte Carlo to sample from the posterior of the original model.

Show the probablity posterior distribution of the only (active) component.

Remarks

why is it crucial that the input distribution is a multivariate Gaussian and that the covariance matrix is $I_{d}$? For example can this procedure be extended for a pair of conjugate distributions like the Beta and the Binomial distribution?

This original formulation of ASMH results in a biased sample. Schuster, Ingmar, Paul G. Constantine, and T. J. Sullivan. "Exact active subspace Metropolis-Hastings, with applications to the Lorenz-96 system." arXiv preprint arXiv:1712.02749 (2017).